摘要
弥散颗粒燃料及可燃毒物由于其固有安全性及自屏效应而被广泛关注,但其双重非均匀性为中子学计算带来挑战。为了研究弥散颗粒系统的双重非均匀性大小,评价体积均匀化方法的适用性,本文针对弥散不同类型、不同相体积、不同颗粒尺寸的颗粒以及不同富集度燃料基体的栅元系统进行了分析,评价栅元系统的颗粒模型与体积均匀化模型在零燃耗下的反应性偏差。分析结果显示,对于弥散燃料颗粒,体积均匀化方法的计算偏差随弥散颗粒尺寸的增加、燃料富集度的增加、以及弥散颗粒相体积的减小而增大;对于弥散可燃毒物颗粒,体积均匀化方法的计算偏差随弥散颗粒的颗粒尺寸的增加、基体燃料富集度的减小、弥散颗粒相体积的增加、以及弥散颗粒吸收截面的增大而增大。同时本文给出了弥散颗粒的双重非均匀性大小的大致顺序,针对双重非均匀性最小和最大的两种毒物颗粒也进行了详细分析,给出了是否需要考虑其双重非均匀性的大致判定条件,为弥散颗粒系统的数值计算提供指导。
The particle-dispersed fuel and burnable poison have been concerned because of the inherent safety and self-shielding effect, but its double-heterogeneity(DH) throws challenges to traditional neutronic calculation programs. For the study of influencing factors of DH and adaptability of the traditional volumetric homogenization method(VHM), the particle type, particle size, phase volume, and the fuel enrichment are analyzed in this paper to evaluate the reactivity deviation between the grain model of the Monte Carlo program and VHM of traditional program at zero burnup condition. Analysis results show that, for the particle-dispersed fuel, the reactivity deviation will increase with the increase of particle size and fuel enrichment, and the decrease of phase volume of fuel particles, and for the particle-dispersed burnable poison, the reactivity deviation will increase with the increase of particle size and phase volume, cross section, and the decrease of the fuel enrichment. And then the order of particle DH is shown, and the two poisons with the largest and smallest double heterogeneity are also analyzed in details, and the condition for considering the DH are given, which provides guidance for numerical calculations of dispersed particles.
作者
娄磊
柴晓明
姚栋
陈亮
刘晓黎
李司南
唐霄
张策
LOU Lei;CHAI Xiao-ming;YAO Dong;CHEN Liang;LIU Xiao-li;LI Si-nan;TANG Xiao;ZHANG Ce(China Nuclear Power Research and Design Institute,Chengdu,Sichuan Prov.610213,China)
出处
《中国核电》
2022年第4期610-617,共8页
China Nuclear Power
基金
国家自然科学基金(编号:1170051016)。
关键词
弥散颗粒燃料
弥散颗粒可燃毒物
双重非均匀性
体积均匀化方法
反应性计算偏差
particle-dispersed fuel
particle-dispersed burnable poison
double heterogeneity(DH)
volumetric homogenization method(VHM)
reactivity deviation