期刊文献+

基于SPA-LSSVM的混合农药残留荧光检测建模方法

Modeling method for fluorescence detection of mixed pesticide residues based on SPA-LSSVM
下载PDF
导出
摘要 为了提高多组分混合农药残留荧光检测的含量预测精度,该文提出一种基于连续投影算法(Successive projections algorithm,SPA)和最小二乘支持向量机(Least squares support vector machines,LSSVM)的建模方法。该方法首先应用连续投影算法分别优选出灭蝇胺、异丙甲草胺、克菌丹及噻虫嗪4种农药对应的特征波长,获得25个特征波长点作为预测模型的输入;然后应用最小二乘支持向量机方法对该四组分混合农药残留进行含量预测建模,发现该方法模型的预测精度高于传统偏最小二乘回归模型,验证了方法的有效性。试验结果表明,该方法可用于多组分混合农药残留的荧光检测,且检测精度良好。 In order to improve the accuracy of content prediction for multi-component mixed pesticide residues by fluorescence detection,a novel method based on successive projections algorithm(SPA)and least squares support vector machines(LSSVM)is proposed.Firstly,the feature wavelengths of cyromazine,metolachlor,captan and thiamethoxam are selected by successive projection algorithm,and 25 characteristic wavelength points are obtained as the input of the prediction model.Then,the least squares support vector machines method is applied to predict the content of the four pesticide residues in the mixed solution.It is found that the prediction accuracy of the method is higher than that of the traditional partial least squares regression model,which verifies the effectiveness of the method.The experimental results show that the SPA-LSSVM method can be applied for the fluorescence detection of multi-component pesticide residues,and has high prediction accuracy.
作者 王晓燕 季仁东 韩月 卞海溢 杨玉东 蒋喆臻 冯小涛 徐江宇 Wang Xiaoyan;Ji Rendong;Han Yue;Bian Haiyi;Yang Yudong;Jiang Zhezhen;Feng Xiaotao;Xu Jiangyu(Jiangsu Laboratory of Lake Environment Remote Sensing Technologies,Huaiyin Institute of Technology,Huai’an 223001,China)
出处 《南京理工大学学报》 CAS CSCD 北大核心 2022年第5期632-641,共10页 Journal of Nanjing University of Science and Technology
基金 国家自然科学基金(62141502) 江苏省产学研合作项目(BY2020266) 江苏省研究生科研与实践创新计划项目(SJCX21-1510) 淮阴工学院研究生科技创新计划项目(HGYK202015)。
关键词 农药残留 荧光检测 连续投影算法 最小二乘支持向量机 含量预测 pesticide residues fluorescence detection successive projections algorithm least squares support vector machines content prediction
  • 相关文献

参考文献13

二级参考文献103

共引文献144

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部