摘要
考虑弹流润滑和时变接触刚度特性,提出一种利用位置函数代替时变刚度系数的计算方法,建立具有滚道波纹度的双列圆锥滚子轴承动力学计算模型,分析了波纹度波数、幅值对轴承振动特性的影响。结果表明:当滚道表面存在波纹度时,轴承径向振动位移频谱图均出现Zf及其倍频成分;当滚道波纹度波数与滚子个数相等或是其整数倍时,振动位移频谱取得峰值,轴承发生强烈振动。当内圈滚道表面存在波纹度时,振动位移频谱出现多种单个滚子通过内圈滚道频率和轴转频的组合频率成分;轴承径向振动位移频谱图峰值点所对应的频率与波数有明确的数学关系;相比于内圈,外圈波纹度幅值对轴承径向振动影响较大,且振动位移的峰峰均值随滚道波纹度幅值的增大而增大。
Considering the elastohydrodynamic lubrication theory and time-varying contact stiffness as the basis,a method using position function instead of time-varying stiffness coefficient was developed in this paper.A dynamics calculation model for a double-row tapered roller bearing with raceway surface waviness was established and effects of wave numbers and amplitude of the waviness on the vibration characteristics of the bearing were analyzed.Results show that the raceway surface waviness can cause the Zfand its multiple frequency in spectrum of vibration displacement of bearings in radial direction.The peak value appears when wave numbers of the waviness are equal or integral multiple to the number of the rollers,while the bearing is in seriously vibration.Many coupling frequencies of and rotating frequency appear in spectrum of vibration displacement of the bearing in the radial direction when surface waviness occurs in the inner ring raceway,meanwhile there is a definite mathematical relationship between wave numbers and frequencies of peak value.Compared to the inner ring,amplitude of the waviness on the outer ring has great influence on vibration displacement of the bearing in the radial direction,moreover the peak-to-peak mean value of vibration displacement increases with the increase of the amplitude with raceway surface waviness.
作者
吕润楠
郝旭
于长鑫
矫文聪
于泽洋
Lü Runnan;HAO Xu;YU Changxin;JIAO Wencong;YU Zeyang(Wafangdian Bearing Group National Bearing Engineering Technology Research Center Co.,Ltd.,Wafangdian 116300,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2022年第20期126-132,共7页
Journal of Vibration and Shock
基金
国家重点研发计划资助项目(2018YFB2000300)。
关键词
振动频谱
双列圆锥滚子轴承
表面波纹度
spectrum of vibration
double row tapered roller bearing
surface waviness