期刊文献+

几何参数对含空气蒸汽冷凝影响的数值分析 被引量:1

Numerical Analysis on Effect of Geometric Parameter on Steam Condensation in Presence of Air
下载PDF
导出
摘要 含空气蒸汽冷凝是反应堆失水事故时安全壳内重要的热工水力现象。已有研究多关注气体压力、温度等热工参数对传热特性的影响,而对几何参数的影响及其作用原理分析较少。采用三维CFD数值模拟方法,基于扩散边界层冷凝机理模型研究了管径(4~60 mm)、管长(0.1~7 m)及倾角(0°~90°)对含空气蒸汽冷凝传热特性的影响。结果表明,管径、管长及倾角均对含空气蒸汽冷凝传热特性有显著影响。平均冷凝传热系数随管径的增大而减小;随管长的增长先减小后增大,3 m左右达到最小值;随倾角的增大而增大。局部冷凝传热系数沿管长方向先迅速减小后缓慢增大。倾斜布置时,迎流面产生明显传热强化,向两侧逐渐减弱,背流面存在一定的传热抑制。 Steam condensation in the presence of air is an important thermal-hydraulic phenomenon in containment under loss of coolant accidents(LOCAs)or main steam line break accidents(MSLBs).Previous studies have focused on the effects of thermal parameters such as air mass fraction,gas pressure and sub-cooling on heat transfer characteristics,but less on the influence and action principle of geometric parameters such as tube length,tube diameter and inclination angle.Fully understanding the influence of geometric parameters on condensation heat transfer of steam containing air is of great significance for efficient heat transfer,so as to improve the safety and economy of related applications.The effects of tube diameter(4-60 mm),tube length(0.1-7 m)and inclination angle(0°-90°)on condensation heat transfer characteristics of air containing steam were studied based on the diffusion boundary layer condensation mechanism model by using three-dimensional CFD numerical simulation method.The results show that the tube diameter,tube length and inclination angle have significant effects on condensation heat transfer characteristics of air containing steam.However,when tube diameter exceeds 30 mm,tube length exceeds 1 m and inclination angle exceeds 60°,the average condensation heat transfer coefficient is no longer sensitive to the change of geometric parameters.The average condensation heat transfer coefficient decreases with the increase of tube diameter,and the descent speed decreases rapidly.When the tube diameter is 4 mm,the average condensation heat transfer coefficient is twice that of 60 mm.It first decreases and then increases with the increase of tube length,and reaches the minimum value at about 3 m.And it increases with the increase of inclination angle.The high concentration air layer near the wall is the main thermal resistance in the condensation process of steam-air,and its thickness makes a good negative correlation with condensation heat transfer coefficient.The high concentration air layer will first accumu
作者 肖家禹 孙中宁 李荣绩 李文涛 丁铭 曹夏昕 边浩志 XIAO Jiayu;SUN Zhongning;LI Rongji;LI Wentao;DING Ming;CAO Xiaxin;BIAN Haozhi(Fundamental Science on Nuclear Safety and Simulation Technology Laboratory,Harbin Engineering University,Harbin 150001,China)
出处 《原子能科学技术》 EI CAS CSCD 北大核心 2022年第10期2069-2077,共9页 Atomic Energy Science and Technology
基金 国家自然科学基金(11975085)。
关键词 不凝性气体 凝结 管径 管长 倾角 数值模拟 non-condensable gas condensation tube diameter tube length inclination angle numerical simulation
  • 相关文献

参考文献5

二级参考文献33

  • 1童正明,徐波,李生娟,叶立.含不凝性气体的蒸汽在垂直圆管内表面冷凝换热的实验研究[J].上海理工大学学报,2005,27(2):120-122. 被引量:9
  • 2ROSA J C. Review on condensation on the con- tainment structures[J]. Progress in Nuclear En-ergy, 2009, 51(1): 32-66. 被引量:1
  • 3UCHIDA H, OYAMA A, TOGO Y. Evaluation of post-incident cooling systems of light-water power reaetors[C] // Proceedings of International Conference on Peaceful Uses of Atomic Energy. [S. l. ]: [s. n. ], 1965: 93-102. 被引量:1
  • 4TAGAMI T. Interim report on safety assessments and facilities establishment project [ R]. Japan: Atomic Energy Research Agency, 1965. 被引量:1
  • 5LIU H, TODREAS N E, DRISCOLL M J. An experimental investigation of a passive cooling unit for nuclear plant containment[J]. Nucl Eng Des, 2000, 199(3): 243-255. 被引量:1
  • 6DEHBI A A. Analytical and experimental investiga- tion of the effects of non-condensable gases on steam condensation under turbulent natural convection con- ditions[D]. [S. 1. ]: [s. n. ], 1990. 被引量:1
  • 7NUSSELT W. De oberflachenkondensation des waserdampfes[M]. Frankfurt: VDI, 1916: 541- 546, 569-575. 被引量:1
  • 8Rosa J C, Escriva A, Herranz L E, Cicero T, Munoz-Cobo J L.Review on condensation on the containment structures [J]. Progressin Nuclear Energy, 2009, 51: 32-66. 被引量:1
  • 9Byun C S , Jerng D W , Todreas N E, Driscoll M J. Conceptual designand analysis of a semi-passive containment cooling system for a largeconcrete containment [J]. Nuclear Engineering and Design, 2000,199: 227-242. 被引量:1
  • 10Kang Y M, Park G C. An experimental study on evaporative heattransfer coefficient and applications for passive cooling of AP600steel containment [J]. Nuclear Engineering and Design, 2001, 204:347-359. 被引量:1

共引文献32

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部