期刊文献+

结合多特征赋权的谱聚类水下多目标分割技术 被引量:1

Underwater Multi-object Segmentation Technology Based on Spectral Clustering with Multi-feature Weighting
下载PDF
导出
摘要 由于声呐图像受噪声污染严重,导致水下多目标分割存在精度低的问题.为此,提出一种自调整谱聚类结合熵权法进行多特征赋权的水下多目标分割技术.该技术首先通过自调整谱聚类对声呐图像的像素点进行聚类处理,使图像划分为多个独立的区域,然后根据多特征的互补性和冗余性统计每个区域的信息熵、亮度、对比度和狭长度等特征,利用熵权法对多特征进行赋权并筛选出最优的一个目标区域,再将该最优目标区域和所有区域进行多特征相似度匹配,最后根据相似度的匹配结果使用自适应阈值迭代法自动分割出所有的目标区域.实验结果表明没有对噪声干扰区域误分割,分割出的目标区域精度更高,验证了所提方法的有效性. Sonar image is seriously polluted by noise,which leads to the problem of low precision in underwater multi-target segmentation.Therefore,this paper proposes an underwater multi-object segmentation technique based on self-adjusting spectrum clustering,combined with the entropy weight method.The technology firstly clusters through self-tuning spectral clustering of sonar image pixel clustering processing,so that the image is divided into multiple independent areas.According to the complementarity and redundancy of multiple features,the information entropy,brightness,contrast and narrow length of each region are calculated.The entropy weight method is used to weight multiple features and select the optimal target region.Then,the optimal target region is matched with all regions by multi-feature similarity.Finally,all target regions are segmented automatically by the adaptive threshold iterative method according to the matching results of similarity.Experimental results show that there is no oversegmented of noise interference regions,and target regions segmented have higher accuracy,which verifies the effectiveness of the proposed method.
作者 刘光宇 曹禹 曾志勇 赵恩铭 邢传玺 LIU Guangyu;CAO Yu;ZENG Zhiyong;ZHAO Enming;XING Chuanxi(School of Engineering,Dali University,Dali 671003,China;College of Physics and Optoelectronic Engineering,Harbin Engineering University,Harbin 150001,China;School of Electrical and Information Technology,Yunnan Minzu University,Kunming 650031,China)
出处 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2022年第10期51-60,共10页 Journal of Hunan University:Natural Sciences
基金 国家自然科学基金项目(61761048) 云南省地方本科高校基础研究联合专项资金项目[2019FH001(-066)] 黑龙江省自然科学基金项目(LC2018026)。
关键词 目标 图像分割 聚类 特征选择 熵权法 objective image segmentation clustering feature selection entropy method
  • 相关文献

参考文献7

二级参考文献54

  • 1陈箫枫,潘保昌,郑胜林,赵全友,梁坚.用顶帽变换估计并消除图像背景[J].微计算机信息,2008,24(9):310-311. 被引量:11
  • 2林生佑,潘瑞芳,杜辉,石教英.数字抠图技术综述[J].计算机辅助设计与图形学学报,2007,19(4):473-479. 被引量:18
  • 3Glasbey C A. An analysis of histogram based thresholding algorithms[J]. CVGIP-GMIP, 1993, 55 (6): 532-537. 被引量:1
  • 4Ando S. Consistent gradient operators[J]. IEEE Transactions on Pattern Analysis and Machine Intel- ligence, 2000, 22 (3) : 252-265. 被引量:1
  • 5Li N,Liu M,Li Y. Image segmentation algorithm using watershed transform and level set method[C],// The 2007 IEEE International Conferent on Acous- tics, Speech and Signal Processing(ICASSP), Honolulu, USA, 2007: 613-616. 被引量:1
  • 6Chang H, Yeung D Y. Robust path-based spectral clustering with application to image segmentation [C]//The 10th IEEE International Conference on Computer Vision, Beijing, 2005: 278-285. 被引量:1
  • 7Wang J, Cohen M F. An iterative optimization ap- proach for unified image segmentation and matting [C]//The 10th IEEE International Conf on Comput- er Vision, Beijing, 2005:936-943. 被引量:1
  • 8Poter T, Duff T. Compositing digital images[C]// Computer Graphics Proceedings, Annual Conference Series, ACM SIGGRAPH, New York, 1984: 253- 259. 被引量:1
  • 9Levin A, Rav-Acha A, Lischinski D. Spectral mat ting[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2008, 30 (10) : 1699-1712. 被引量:1
  • 10Levin A, Lischinski D, Weiss Y. A closed form solution to natural image matting[J]. IEEE Transac- tions on Pattern Analysis and Machine Intelligence,2008, 30(2)= 228-242. Gonzalez C, Woods E. Digital Image Processing (2nd ed)[M].北京:电子工业出版社,2008:595-600. 被引量:1

共引文献48

同被引文献10

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部