期刊文献+

黄河源5种高寒植物光谱特征分析及识别 被引量:3

Analysis and identification of spectral characteristics of five plant species in alpine meadow in the source area of the Yellow River
下载PDF
导出
摘要 玛多县高寒草甸是黄河源区草地生态系统的重要组成部分,研究其主要植物地面光谱特征和植被指数是实现物种识别的基础。本研究使用地物光谱仪采集黄河源头在旺盛生长时期的5种常见高寒植物的光谱,将原始光谱数据进行转换和分析,筛选敏感波段组合计算归一化植被指数(NDVI)和比值植被指数(RVI),以探索分类和识别5种植物的最佳方法。研究结果如下:1)5种高寒植物在可见光与近红外波段的光谱与植物特有的光谱特征相符,但相互存在明显差异;2)反射率(REF)和吸收率(ABS)的一阶微分(GREF和GABS)变换扩大了5种高寒植物的光谱特性,相对稳定的波长范围为520~595、880~1100 nm、717~737和943~958 nm;3)5种植物在ABS及GABS转化下的490~530 nm和780~820 nm组合计算的NDVI΄和RVI΄差异明显大于全波段组合计算的NDVI΄和RVI΄,而且优于其他组合的NDVI΄和RVI΄。综上所述,运用一阶微分处理敏感波段反射率和吸收率优化植被指数可以提高黄河源区5种高寒植物的识别效果。 The alpine meadow isan important part of the grassland ecosystem in the source area of the Yellow River in Maduo County,and the ground spectral characteristics of the main plantsand vegetation index arethe basis for species identification.In this study,a ground feature spectrometer was used to collect the spectra of 5 common al⁃pine plants inthe source area of the Yellow River during the vigorous growth period,and the original spectral data wereconverted and analyzed,and the sensitive band combinations were selected to calculate the normalized vegeta⁃tion index(NDVI)and the ratio vegetation index(RVI)to explore the best way to classify and identify 5 species.The results showed that 1)The spectra of 5speices in the visible and near⁃infrared bands were consistent with the plants unique spectral characteristics,and there were significant differences.2)The first⁃order differential(GREF and GABS)transformation of reflectance(REF)and absorptance(ABS)expanded the spectral characteristics of 5 species,and the relatively stable wavelength ranges were 520 to 595,880 to 1100 nm and 717 to 737,943 to 958 nm.3)The differences of NDVI′and RVI′calculated for the combination of 490 to 530 nm and 780 to 820 nm under ABS and GABS transformation of 5 specieswere significantly greater than the control,and better than other combina⁃tions of NDVI′and RVI′.In conclusion,using the first⁃order differential to process the reflectance and absorbance of the sensitive band to optimize the vegetation index can improve the recognition effect of 5 species in the source area of the Yellow River.
作者 刘志刚 关文昊 何国兴 蒲小鹏 纪童 杨军银 李强 柳小妮 LIU Zhi-gang;GUAN Wen-hao;HE Guo-xing;PU Xiao-peng;JI Tong;YANG Jun-yin;LI Qiang;LIU Xiao-ni(College of Grassland Science,Gansu Agricultural University,Key Laboratory for Grassland Ecosystem of Ministry of Education,Pratacultural Engineering Laboratory of Gansu Province,Sino-U.S.Centers for Grazing Land Eco-system Sustainability,Lanzhou 730070,China)
出处 《草原与草坪》 CAS CSCD 2022年第4期23-30,共8页 Grassland and Turf
基金 甘肃省新一轮草原补奖效益评估及草原生态评价研究(XZ20191225) 超低空微遥感技术在草原监测中的应用研究推广及示范(034-036268) 东祁连山高寒草地态监测(034-036260) 甘肃省林草局“东祁连山高寒草地群落监测研究”(GSLC-2020-5)。
关键词 黄河源 高寒植物 光谱特征 植被指数 识别 source area of the yellow river alpine plant spectral characteristics vegetation index identification
  • 相关文献

参考文献20

二级参考文献329

共引文献899

同被引文献58

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部