期刊文献+

基于改进Mosaic数据增强和特征融合的Logo检测 被引量:14

Logo Detection Based on Improved Mosaic Data Enhancement and Feature Fusion
下载PDF
导出
摘要 近年来,Logo检测在知识产权保护和产品品牌管理等领域得到了广泛应用;针对Logo检测中的复杂背景和多尺度问题,提出了一种改进Mosaic数据增强和特征融合的Logo检测算法;将6张原始图片随机翻转、缩放和拼接构成合成图像,与单张图像和由4张原始图片合成的图像一起作为YOLOv4模型的训练输入,并确定3种输入形式的最优比例,同时使用一种新的训练策略,改进的Mosaic数据增强方法丰富了Logo对象的尺度和背景,使模型更好地学习全局和局部特征;在路径整合网络(PANet)的基础上引入跨层连接、重复堆叠、直接连接和加权特征融合等操作,改进的PANet扩大了模型感受野,增强了模型的多尺度特征表达能力;实验结果表明,提出的MP-YOLOv4算法在减小21.7%模型大小的同时,IoU(intersection of union)等于0.5时的平均精度上达到了67.4%,较YOLOv4提高了2.4%,同时在多尺度目标上的检测性能得到了改善。 Logo detection has been widely used in intellectual property protection and product brand management in recent years.Aiming at the complex background and multi-scale problems in Logo detection,a Logo detection algorithm based on the improved Mosaic data enhancement and feature fusion is proposed.Six original images are randomly flipped,scaled and combined to form a composite image,which is used as the training input of the YOLOv4 model together with single image and composite image of four original images,and the optimal proportion of the three input is determined.Meanwhile,a new training strategy is used.The improved Mosaic data enhancement further enriches the scale and context of Logo objects,the model is used to learn the global and local features better.Based on the path integration network(PANet),some operations such as cross-layer connection,repeated stacking,direct connection and weighted feature fusion are introduced.The improved PANet enlarges the receptive field of the model and enhances the multi-scale feature expression ability of the model.Experimental results show that the proposed MP-YOLOv4 algorithm can reduce the model size by 21.7%,and the average precision reaches 67.4%when the Intersection of Union(IoU)equals 0.5,the average precision of the proposed MP-YOLOv4 algorithm is 2.4%higher than that of the YOLOv4 algorithm.At the same time,the detection performance of the multi-scale targets is improved.
作者 陈翠琴 范亚臣 王林 CHEN Cuiqin;FAN Yachen;WANG Lin(School of Automation and Information Engineering,Xi'an University of Technology,Xi'an 710048,China)
出处 《计算机测量与控制》 2022年第10期188-194,201,共8页 Computer Measurement &Control
基金 陕西省科技计划重点项目(2017ZDCXL-GY-05-03)。
关键词 Logo检测 YOLOv4 Mosaic数据增强 特征融合 多尺度 Logo detection YOLOv4 Mosaic data enhancement future fusion multi-scale
  • 相关文献

参考文献1

二级参考文献2

共引文献1

同被引文献132

引证文献14

二级引证文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部