期刊文献+

基于机器学习的二次采油高耗水层识别方法研究 被引量:3

Identification Method for High Water Consumption Layer in Second Oil Recovery Based on Machine Learning
下载PDF
导出
摘要 由于地质、流体物性的差异,层状油藏储层注入状况不同,长期的统注统采加剧了层间矛盾进而形成高耗水层,导致了注入水的低效循环。高耗水层的准确表征对于油藏的开发与调整具有重要意义,鉴于传统方法的不足,文章提出了一种全新的高耗水层识别与评价方法。新方法基于储层含水率及导数曲线,采用随机森林算法对不同储层及流体状态下的含水率导数峰值PV数进行预测,从而实现了储层耗水能力的初步评价。在此基础上,根据高耗水层的基本特征,选取评价指标进行定量表征,进而建立了层状油藏高耗水层的识别与评价流程并应用于胜利油田Z1区块。结果表明:层状油藏含水率导数曲线具有多峰特征,峰值对应的PV数主要受相对井控面积、流体黏度比和储层平均含水饱和度的影响。针对主要因素建立的高耗水层识别与评价流程可对高耗水层的发育情况进行快捷、准确的表征,并为后续高耗水层治理技术的选取和生产制度的优化提供依据。 In the stratified reservoir, the injection performance differs among layers due to the distinct geologic and fluid properties. Long-term commingled injection and production aggravates inter-layer interference, resulting in high-water consumption layers and inefficient water circulation. Accurate characterization of high-water consumption layers is critical for reservoir development and adjustment. In view of the disadvantages of conventional methods, a novel methodology was proposed to identify and evaluate high-water consumption layers. Based on water cut and derivative curves, the random forest algorithm was applied to predict the PV number against the peak of water cut derivative under the different reservoir and fluid conditions, thus realizing the preliminary evaluation for the water consumption capacity of the reservoir. After that, according to the production performance, evaluation indicators were established to quantify the development of high-water consumption layers. The methodology for identifying and evaluating high-water consumption layers was proposed and applied to Z1 fault-block reservoir in Shengli oilfield. The results indicated that the stratified reservoir has multi-peak characteristics on the derivative curve of water cut, and the PV number corresponding to the peak is mainly affected by relative area, viscosity ratio, and average water saturation. The proposed methodology can efficiently and accurately predict the development of high-water consumption layers and provide guidance for the selection of treatment methods and production optimization.
作者 沈旭东 刘慧卿 张郁哲 许宏亮 范欣 马良宇 尚雄涛 SHEN Xudong;LIU Huiqing;ZHANG Yuzhe;XU Hongliang;FAN Xin;MA Liangyu;SHANG Xiongtao(State Key Laboratory of Petroleum Resources and Prospecting,China University of Petroleum(Beijing),Beijing 102249,China;No.1 Gas Production Plant,SINOPEC North China Company,Zhengzhou,Henan 450007,China;CNPC Great Wall Drilling Engineering Co.,Ltd.Panjin,Liaoning 124010,China;Liaohe Oilfield Safety and Environmental Protection Technology Supervision Center,Panjin,Liaoning 124010,China;CNOOC Tianjin Branch,Tianjin 300452,China;No.2 Oil Production Plant,PetroChina Changqing Oilfield,Qingyang,Gansu 745100,China)
出处 《钻采工艺》 CAS 北大核心 2022年第4期74-80,共7页 Drilling & Production Technology
基金 国家自然科学基金“难采稠油多元热复合开发机理与关键技术基础研究”(编号:U20B6003)。
关键词 层状油藏 高耗水层 含水率 数值模拟 机器学习 洛伦兹曲线 stratified reservoir high water consumption layers water cut numerical simulation machine learning lorenz curve
  • 相关文献

参考文献15

二级参考文献104

共引文献223

同被引文献45

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部