期刊文献+

利用时空特征编码的单目标跟踪网络 被引量:3

A spatio-temporal encoded network for single object tracking
原文传递
导出
摘要 目的 随着深度神经网络的出现,视觉跟踪快速发展,视觉跟踪任务中的视频时空特性,尤其是时序外观一致性(temporal appearance consistency)具有巨大探索空间。本文提出一种新颖简单实用的跟踪算法——时间感知网络(temporal-aware network, TAN),从视频角度出发,对序列的时间特征和空间特征同时编码。方法 TAN内部嵌入了一个新的时间聚合模块(temporal aggregation module, TAM)用来交换和融合多个历史帧的信息,无需任何模型更新策略也能适应目标的外观变化,如形变、旋转等。为了构建简单实用的跟踪算法框架,设计了一种目标估计策略,通过检测目标的4个角点,由对角构成两组候选框,结合目标框选择策略确定最终目标位置,能够有效应对遮挡等困难。通过离线训练,在没有任何模型更新的情况下,本文提出的跟踪器TAN通过完全前向推理(fully feed-forward)实现跟踪。结果 在OTB(online object tracking:a benchmark)50、OTB100、TrackingNet、LaSOT(a high-quality benchmark for large-scale single object tracking)和UAV(a benchmark and simulator for UAV tracking)123公开数据集上的效果达到了小网络模型的领先水平,并且同时保持高速处理速度(70帧/s)。与多个目前先进的跟踪器对比,TAN在性能和速度上达到了很好的平衡,即使部分跟踪器使用了复杂的模板更新策略或在线更新机制,TAN仍表现出优越的性能。消融实验进一步验证了提出的各个模块的有效性。结论 本文提出的跟踪器完全离线训练,前向推理不需任何在线模型更新策略,能够适应目标的外观变化,相比其他轻量级的跟踪器,具有更优的性能。 Objective Current visual tracking has been developed dramatically based on deep neural networks. The task of single object visual tracking aims at tracking random objects in a sequential video streaming through yielding the bounding box of the object bounding box in the initial frame. It can be an essential task for multiple computer vision applications like surveillance systems, robotics and human-computer interaction. The simplified, small scale, easy-used and feed-forward trackers are preferred due to resources-constrained application scenarios. Most of methods are focused on top performance. Instead, we break this paradox from another perspective through the key temporal cues modeling inside our model and the ignorance of model update process and large-scaled models. The intrinsic qualities are required to be developed in the research community(i.e., video streaming). A video analysis task is beneficial to formulate the basis of the tracking task itself. First, the object has a spatial displacement constraint, which means the object locations in adjacent frames will not be widely ranged unless dramatic camera motions happened. Almost visual trackers are followed this path and a new framed search objects is overlapped starting from the location in the last frame. Next, the potential temporal appearance consistency problem, which indicates the target information from preceding frames changes smoothly. This could be regarded as the temporal context, which can provide clear cues for the following predictions. However, the second feature has not been fully explored in the literature. Existing methods is leveraged temporal appearance consistency in two ways as mentioned below: 1) use the target information only in the first frame by modeling visual tracking as a matching problem between the given initial patch and the follow-up frames. Siamese-network-based methods are the most popular and effective methods in this category. They applied a one-shot learning scheme for visual tracking, where the object patch in the
作者 王蒙蒙 杨小倩 刘勇 Wang Mengmeng;Yang Xiaoqian;Liu Yong(College of Control Science and Engineering,Zhejiang University,Hangzhou 310027,China)
出处 《中国图象图形学报》 CSCD 北大核心 2022年第9期2733-2748,共16页 Journal of Image and Graphics
基金 国家自然科学基金项目(61836015)。
关键词 计算机视觉 目标跟踪 时空特征编码 任意目标跟踪 角点跟踪 时序外观一致性 高速跟踪 computer vision object tracking spatial-temporal feature coding arbitrary target tracking corner tracking temporal appearance consistency high-speed tracking
  • 相关文献

参考文献8

二级参考文献69

  • 1田杰,张春华.基于分形的水声图像目标探测[J].中国图象图形学报(A辑),2005,10(4):479-483. 被引量:14
  • 2程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 3王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504. 被引量:40
  • 4杨皓筠.相关跟踪中若干关键问题的研究:硕士学位论文[M].武汉:华中科技大学图象识别与人工智能研究所,2000,4.. 被引量:1
  • 5Sun Sun-gu. Target detection using local fuzzy thresholding and binary template matching in forward-looking infrared images [ J]. Optical Engineering, 2007,46 ( 3 ) -036402:1-9. 被引量:1
  • 6Qu You-shan, Duan Yong-qiang, Li Ying-cai, et al. Automatic detection of moving point targets in staring infrared binocular imaging system [ C ]//Proceedings of SPIE: Remote Sensing and Infrared Devices and Systems. Changchun, China: SPIE Press, 2006, 6031: 603110/1-603110/9. 被引量:1
  • 7Zhang Hai-ying, Zhang Tian-wen, Wen Xuan, et al. Modified pipeline algorithm for detection and tracking of infrared point targets[C ]//Proceedings of SPIE: 2nd International Symposium Advanced Optical Manufacturing and Testing. USA: International Society for Optical Engineering, 2006, 6150: 615027/1-615027/6. 被引量:1
  • 8Gordon N J, Salmond D J, Smith A F M. Novel approach to nonlinear/non-Gaussian bayesian state estimation [ J ]. IEE Proceedings Part F: Radar and Signal Processing, 1993,140 (2): 107-113. 被引量:1
  • 9Perez P, Hue C, Vermaak J, et al. Color-based probabilistic tracking[ C]//Proceedings of the 7th European Conference on Computer Vision. London, UK: Springer-Verlag, 2002, 1: 661- 675. 被引量:1
  • 10Nummiaro K, Koller-Meier E, Van Gool L. An adaptive color based particle filter [ J ]. Image and Vision Computing, 2003, 21(1): 99-110. 被引量:1

共引文献110

同被引文献35

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部