期刊文献+

Machine learning based altitude-dependent empirical LoS probability model for air-to-ground communications

原文传递
导出
摘要 Line-of-sight(LoS)probability prediction is critical to the performance optimization of wireless communication systems.However,it is challenging to predict the LoS probability of air-to-ground(A2G)communication scenarios,because the altitude of unmanned aerial vehicles(UAVs)or other aircraft varies from dozens of meters to several kilometers.This paper presents an altitude-dependent empirical LoS probability model for A2G scenarios.Before estimating the model parameters,we design a K-nearest neighbor(KNN)based strategy to classify LoS and non-LoS(NLoS)paths.Then,a two-layer back propagation neural network(BPNN)based parameter estimation method is developed to build the relationship between every model parameter and the UAV altitude.Simulation results show that the results obtained using our proposed model has good consistency with the ray tracing(RT)data,the measurement data,and the results obtained using the standard models.Our model can also provide wider applicable altitudes than other LoS probability models,and thus can be applied to different altitudes under various A2G scenarios.
出处 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2022年第9期1378-1389,共12页 信息与电子工程前沿(英文版)
基金 Project supported by the National Key Scientific Instrument and Equipment Development Project,China(No.61827801) the Open Research Fund of the State Key Laboratory of Integrated Services Networks,China(No.ISN22-11)。
  • 相关文献

参考文献3

二级参考文献21

共引文献215

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部