期刊文献+

Mask R-CNN and multifeature clustering model for catenary insulator recognition and defect detection 被引量:3

原文传递
导出
摘要 Rod insulators are vital parts of the catenary of high speed railways(HSRs).There are many different catenary insulators,and the background of the insulator image is complicated.It is difficult to recognise insulators and detect defects automatically.In this paper,we propose a catenary intelligent defect detection algorithm based on Mask region-convolutional neural network(R-CNN)and an image processing model.Vertical projection technology is used to achieve single shed positioning and precise cutting of the insulator.Gradient,texture,and gray feature fusion(GTGFF)and a K-means clustering analysis model(KCAM)are proposed to detect broken insulators,dirt,foreign bodies,and flashover.Using this model,insulator recognition and defect detection can achieve a high recall rate and accuracy,and generalized defect detection.The algorithm is tested and verified on a dataset of realistic insulator images,and the accuracy and reliability of the algorithm satisfy current requirements for HSR catenary automatic inspection and intelligent maintenance.
出处 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2022年第9期745-756,共12页 浙江大学学报(英文版)A辑(应用物理与工程)
基金 supported by the National Natural Science Foundation of China(Nos.51677171,51637009,51577166 and 51827810) the National Key R&D Program of China(No.2018YFB0606000) the China Scholarship Council(No.201708330502) the Fund of Shuohuang Railway Development Limited Liability Company(No.SHTL-2020-13) the Fund of State Key Laboratory of Industrial Control Technology(No.ICT2022B29),China。
  • 相关文献

参考文献6

二级参考文献13

共引文献41

同被引文献37

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部