期刊文献+

Three Boundary Meshless Methods for Heat Conduction Analysis in Nonlinear FGMs with Kirchhoff and Laplace Transformation 被引量:2

原文传递
导出
摘要 This paper presents three boundary meshless methods for solving problems of steady-state and transient heat conduction in nonlinear functionally graded materials(FGMs).The three methods are,respectively,the method of fundamental solution(MFS),the boundary knot method(BKM),and the collocation Trefftz method(CTM)in conjunction with Kirchhoff transformation and various variable transformations.In the analysis,Laplace transform technique is employed to handle the time variable in transient heat conduction problem and the Stehfest numerical Laplace inversion is applied to retrieve the corresponding time-dependent solutions.The proposed MFS,BKM and CTM are mathematically simple,easyto-programming,meshless,highly accurate and integration-free.Three numerical examples of steady state and transient heat conduction in nonlinear FGMs are considered,and the results are compared with those from meshless local boundary integral equation method(LBIEM)and analytical solutions to demonstrate the effi-ciency of the present schemes.
出处 《Advances in Applied Mathematics and Mechanics》 SCIE 2012年第5期519-542,共24页 应用数学与力学进展(英文)
  • 相关文献

同被引文献12

  • 1Masataka T, Toshiro M, Qing F Y. Time-stepping boundary element method applied to 2D transient heat conduction problems[J]. Applied Mathematical Modelling, 1994, 18(10): 569-576. 被引量:1
  • 2Bruch J C, Zyvoloski G. Transient two-dimensional heat conduction problems solved by the finite element method[J]. International Journal for Numerical Methods in Engineering, 1974, 8(3): 481-494. 被引量:1
  • 3Jirousek J, Qin Q H. Application of hybrid-Trefliz element approach to transient heat conduction analysis[J]. Computers & Structures, 1996, 58(1): 195-201. 被引量:1
  • 4Valtchev S S, Roberty N C. A time-marching MFS scheme for heat conduction problems[J] . Engineering Analysis with Boundary Elements, 2008, 32(6): 480-493. 被引量:1
  • 5Young D L, Chen K H, Lee C W. Novel meshless method for solving the potential problems with arbitrary domain[J]. Journal of ComputationalPhysics, 2005, 209(1): 290-321. 被引量:1
  • 6Fairweather G, Kamgeorghis A. The method of fundamental solutions for elliptic boundary value problems[J]. Advances in Computational Mathematics, 1998, 9(1/2): 69-95. 被引量:1
  • 7Gu Y, Chen W, He X Q. Singular boundary method for steady-state heat conduction in three dimensional general anisotropic media[J]. International Journal of Heat and Mass Transfer, 2012, 55(17/18): 4837-4848. 被引量:1
  • 8Partridge P W, Brebbia C A, Wrobel L C. The dual reciprocity boundary element method[M] . Southampton : Computational Mechanics Publications, 1992. 被引量:1
  • 9陈文.奇异边界法:一个新的、简单、无网格、边界配点数值方法[J].固体力学学报,2009,30(6):592-599. 被引量:27
  • 10CHEN Wen FU ZhuoJia.A novel numerical method for infinite domain potential problems[J].Chinese Science Bulletin,2010,55(16):1598-1603. 被引量:9

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部