期刊文献+

Machine learning in energy storage materials 被引量:4

原文传递
导出
摘要 With its extremely strong capability of data analysis,machine learning has shown versatile potential in the revolution of the materials research paradigm.Here,taking dielectric capacitors and lithium‐ion batteries as two representa-tive examples,we review substantial advances of machine learning in the research and development of energy storage materials.First,a thorough discussion of the machine learning framework in materials science is presented.Then,we summarize the applications of machine learning from three aspects,including discovering and designing novel materials,enriching theoretical simulations,and assisting experimentation and characterization.Finally,a brief outlook is highlighted to spark more insights on the innovative implementation of machine learning in materials science.
出处 《Interdisciplinary Materials》 2022年第2期175-195,共21页 交叉学科材料(英文)
基金 This study was supported by the Basic Science Center Program of NSFC(Grant No.51788104) Major Research Plan of NSFC(Grant No.92066103) NSF of China(Grant No.52002300) Major Program of NSFC(Grant No.51790490) Young Elite Scientists Sponsorship Program by CAST(Frant No.2019QNRC001)。
  • 相关文献

参考文献11

二级参考文献48

共引文献246

同被引文献23

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部