期刊文献+

基于人工智能算法的小麦全基因组选择育种技术研究

下载PDF
导出
摘要 随着小麦等粮食供需矛盾的日益突出,提高作物产量刻不容缓,在影响小麦产量的基因筛选育种领域仍有很多问题亟待研究。该文利用全基因组选择(Genomic Selection,GS)研究冬小麦的基因型和表型数据之间的量化关系,将5种机器学习模型(Linear-SVR、RBF-SVR、Ridge、LightGBM、XGBoost)与2种传统育种模型(GBLUP、BayesA)进行对比,对新育种群体进行表型(如产量、株高、千粒重)预测和选择,进而找到高效的人工智能(AI)算法用于筛选出影响小麦性状的关键基因。研究结果显示,GBLUP,Ridge,Linear-SVR对于小麦产量具有较高的预测准确性,因此机器学习模型结合传统GBLUP模型能够提高基因型预测的准确性,从而为人工智能算法应用于小麦全基因组选择育种开辟新的道路、提供有益的技术支持。 With the contradiction between supply and demand of wheat and other foods becoming increasingly prominent,it is urgent to improve crop yield.There are still many problems to be studied in the field of gene selection and breeding that affect wheat yield.In this paper,whole genome selection(GS)was used to study the quantitative relationship between genotypic and phenotypic data of winter wheat.Five machine learning models(i.e.Linear-SVR,RBF-SVR,Ridge,LightGBM,and XGBoost)were compared with two traditional breeding models(i.e.GBLUP and BayesA)to predict and select phenotypes(such as yield,plant height,weight per 1000 seeds)of new breeding populations.Then an efficient artificial intelligence(AI)algorithm was found to screen out the key genes affecting wheat traits.The results show that GBLUP,Ridge and Linear-SVR have high prediction accuracy for wheat yield,so the machine learning model combined with traditional GBLUP model can improve the accuracy of genotype prediction,so as to open up a new way and provide useful technical support for the application of artificial intelligence algorithm in wheat genome selection and breeding.
出处 《智慧农业导刊》 2022年第19期4-6,共3页 JOURNAL OF SMART AGRICULTURE
基金 省级大学生创新创业训练计划项目(S202110451258) 鲁东大学专创融合课程建设重点项目(202114)。
关键词 全基因组选择 人工智能算法 机器学习 分子育种 冬小麦 whole genome selection artificial intelligence algorithm machine learning molecular breeding winter wheat
  • 相关文献

参考文献3

  • 1唐友..基于全基因组测序的表型预测方法研究及其体系构建[D].东北农业大学,2017:
  • 2Mohsin Ali..全基因组选择的多种预测模型对中国冬小麦产量和品质性状的预测精度研究[D].中国农业科学院,2020:
  • 3赵越..作物杂交种表型的全基因组选择模型研究[D].扬州大学,2021:

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部