摘要
运动学正逆解和奇异位形的预测是机器人设计和运动控制的必要环节。本文针对双臂并联机器人的机械结构,提出了用于求取运动学正逆解数学模型的方法,由此实现通过驱动机器人主臂角度,控制机器人末端坐标的运动轨迹,并确定机器人臂的有效工作空间;同时,利用雅克比矩阵得出了双臂并联机器人正逆运动学奇异位形的预测方法,给出了明确的判定条件。通过并联机器人的实际实验,分析了奇异位形所处的物理姿态和失控情形,验证了正逆解控制和奇异位形存在性预测的正确性,本文所提的方法可为双臂并联机器人的运动控制和轨迹规划提供参考。
The prediction of kinematic forward and inverse solutions and singular dislocations is a necessary part of robot design and motion control. The paper proposes a mathematical model for finding the kinematic forward and backward solutions for the mechanical structure of a two-armed parallel robot, which can control the trajectory of the robot’s end coordinates by driving the angle of the robot’s main arm and determine the effective working space of the robot′s arm. Meanwhile, the prediction method of the forward and backward kinematic singular dislocations of a two-armed parallel robot is derived by using the Jacobi matrix, and a clear determination condition is given. The physical posture and runaway situation of the singular dislocation are analyzed through the actual experiments of the parallel robot, and the correctness of the forward and inverse solution control and the prediction of the existence of the singular dislocation is verified. The method proposed in this paper can provide reference for the motion control and trajectory planning of the two-armed parallel robot.
作者
王恒
余盛
陆勇
朱芳甫
蒋科坚
WANG Heng;YU Sheng;LU Yong;ZHU Fangfu;JIANG Kejian(School of Information Science and Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China;OMRON Hangzhou Branch,Hangzhou 310030,China)
出处
《智能计算机与应用》
2022年第9期1-7,共7页
Intelligent Computer and Applications
基金
国家自然科学基金(11272288)
浙江省自然科学基金(LY18E050017)。
关键词
双臂并联机器人
正逆解
工作空间
雅克比矩阵
奇异位形
dual-armed parallel robot
positive and negative solutions
workspace
Jacobi matrix
singular dislocations