期刊文献+

基于机器学习的网络状态感知分析方法 被引量:2

A Network State-aware Analysis Method Based on Machine Learning
下载PDF
导出
摘要 为实现业务需求和网络能力的实时精准匹配,需要在网络端引入智能采集处理功能对交互数据进行分析处理,实现对6G网络状态的实时感知和估计预测。设计一种基于机器学习的网络状态感知分析方法,通过隐树模型的多层节点感知能力,能够根据通信网络历史数据,从数据层面对当前的通信网络状态进行量化感知,并对网络后续状态进行初步预测,可以为业务传输层的拥塞控制和移动网络层资源调度提供指导。 In order to achieve real-time and accurate matching between business requirements and network capabilities,it is necessary to introduce intelligent collection and processing functions on the network side to analyze and process interactive data,which can realize real-time perception,estimation and prediction of 6G network state.A network state-aware analysis method based on machine learning is designed.Specifically,through the multi-layer node-aware capability of the latent tree model,based on the history data of the communication network,the current communication network state is quantitatively perceived from the data level,and the subsequent network state is preliminarily predicted.The proposed method can provide guidance for congestion control at the business transport layer and resource scheduling at the mobile network layer.
作者 任育峰 REN Yufeng(The 20th Reseh Institute of CETC,Xi'an 710000,China)
出处 《移动通信》 2022年第9期30-34,共5页 Mobile Communications
关键词 网络状态感知 贝叶斯网络 数据分析 network state perception Bayesian network data analysis
  • 相关文献

参考文献5

二级参考文献43

  • 11.Chickering D. Learning equivalence classes of Bayesian networks structures. In: Horvitz E, Jensen F ed. Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1996. 54~61 被引量:1
  • 22.Geriger D, Hekerman D. A charactererization of the Dirichlet distribution with application to learning Bayesian networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. Morgan Kaufmann Publishers Inc., 1995. 196~207 被引量:1
  • 33.Heckman D. A Bayesian approach for learning causal networks. In: Besnard P, Hanks S eds. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1995. 285~295 被引量:1
  • 44.Heckman D, Geiger D, Chickering D. Learning Bayesian networks: the combination of knowledge and statistical data. Machine Learning, 1995,20(3):197~243 被引量:1
  • 55.Heckman D, Shachter R. Decision-Theoretic foundations for causal reasoning. Journal of Artificial Intelligence Research, 1995,3:405~430 被引量:1
  • 66.Heckman D, Mandani A, Wellman M. Real-World applications of Bayesian networks. Communications of the ACM, 1995,38(3):38~45 被引量:1
  • 77.Buntine W. Theory refinement on Bayesian networks. In: Proceedings of the 7th Conference on Uncertainty in Artificial Intelligence. Los Angeles, CA: Morgan Kaufmann Publishers, Inc., 1991. 52~61 被引量:1
  • 88.Cooper G, Herskovits E. A Bayesian method for the introduction of probabilistic networks from data. Machine Learning, 1992,9(4):309~347 被引量:1
  • 99.Russell S, Binder J, Koller D et al. Local learning in probabilistic networks with hidden variables. In: Cooper G F, Moral S ed. Proceedings of the 14th International Joint Conference on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann Publishers, Inc., 1998. 1146~1152 被引量:1
  • 101999-03-15 被引量:1

共引文献327

同被引文献9

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部