摘要
为解决模糊数据的插值问题,利用两点三次Hermite插值公式与三转角方程对样条基函数进行构造,根据不同的边界条件获得插值点的一阶导数信息,再结合模糊数对插值点进行模糊化处理,基于不同的光滑度要求,给出2种模糊样条函数的表达式。最后通过数值算例,验证了构造方法的有效性。
In order to solve the interpolation problem of fuzzy data,the spline basis function was constructed by using the two-point cubic Hermite interpolation formula and the three-turn angle equation,and the first-order derivative information of the interpolation point was obtained.According to different boundary conditions,based on different smoothness requirements,the expressions of two fuzzy spline functions were given.Finally,the validity of the construction method was verified by a numerical example.
作者
赵鹤宇
樊立艳
常锦才
ZHAO He-yu;FAN Li-yan;CHANG Jin-cai(College of Science,North China University of Science and Technology,Tangshan Hebei 063210,China)
出处
《华北理工大学学报(自然科学版)》
CAS
2022年第4期68-79,共12页
Journal of North China University of Science and Technology:Natural Science Edition
基金
国家自然科学基金项目(61702184)。
关键词
模糊数
三次样条
模糊插值
基函数
fuzzy number
cubic spline
fuzzy interpolation
cardinal function