期刊文献+

基于特征分解的快速位姿图优化算法 被引量:1

Fast pose graph optimization algorithm based on eigen decomposition
下载PDF
导出
摘要 位姿图优化(pose graph optimization,PGO)是计算机视觉领域中广泛应用的高维非凸优化算法,很难直接求解,主要依赖于迭代技术,对初始值的质量要求较高,在实践中很难得到保证。针对位姿图优化问题进行了研究,提出了基于特征分解的位姿图简单封闭解算法,该算法首先对PGO问题的最大似然估计进行半定松弛,然后将其转换为特征分解问题,并利用数据的稀疏性设计了改进的模型降阶方法进行求解,进一步提高了算法的计算速度。算法具有可伸缩性、计算成本低和精度高等优点。最后,在模拟和真实的位姿图数据集上进行实验评估,结果表明在不影响精度的情况下,该算法可以快速地进行位姿图优化。 Pose graph optimization(PGO)is a high dimensional non-convex optimization algorithm widely used in the field of computer vision.It is hard to solve directly and mainly relies on iterative techniques.It requires high quality of initial value which is difficult to be guaranteed in practice.This paper studied PGO problem and proposed a simple closed solution algorithm for pose graph based on eigen decomposition.This algorithm first developed the semidefinite relaxation of maximum-likelihood estimation(MLE)for PGO problems.Then it transformed MLE into eigen decomposition problem,and designed an improved model reduction method to solve the problem by using the sparsity of data,which further improved the computational speed of the algorithm.The algorithm had the advantages of scalability,low computational cost and high precision.Finally,experimental evaluation on simulated and real-world pose-graph datasets shows that the proposed algorithm can optimize the pose graph quickly without compromising accuracy.
作者 李雨洁 魏国亮 蔡洁 王苗苗 Li Yujie;Wei Guoliang;Cai Jie;Wang Miaomiao(College of Science,University of Shanghai for Science&Technology,Shanghai 200093,China;Business School,University of Shanghai for Science&Technology,Shanghai 200093,China)
出处 《计算机应用研究》 CSCD 北大核心 2022年第10期3065-3070,共6页 Application Research of Computers
基金 上海市“科技创新行动计划”国内科技合作项目(20015801100)。
关键词 位姿图优化 最大似然估计 特征分解 模型降阶 pose graph optimization maximum-likelihood estimation eigen decomposition model reduction
  • 相关文献

参考文献5

二级参考文献127

  • 1陈卫东,张飞.移动机器人的同步自定位与地图创建研究进展[J].控制理论与应用,2005,22(3):455-460. 被引量:59
  • 2董晓坡,王绪本.救援机器人的发展及其在灾害救援中的应用[J].防灾减灾工程学报,2007,27(1):112-117. 被引量:58
  • 3韩淑洁,陈爱玲,涂志平.消防机器人整车设计方案探讨[J].青岛远洋船员学院学报,2007,28(2):53-57. 被引量:2
  • 4Durrant-Whyte H, Bailey T. Simultaneous localization and mapping: Part I. The essential algorithms[J]. IEEE Robotics and Automation Magazine, 2006, 13(2): 99-108. 被引量:1
  • 5Smith R C, Cheeseman P. On the representation and estimation of spatial uncertainty[J]. International Journal of Robotics Re- search, 1986, 5(4): 56-68. 被引量:1
  • 6Thrun S, Liu Y F, Koller D, et al. Simultaneous localization and mapping with sparse extended information filters[J]. Inter- national Journal of Robotics Research, 2004, 23(7/8): 693-716. 被引量:1
  • 7Montemerlo M, Thrun S, Koller D, et al. FastSLAM: A factored solution to the simultaneous localization and mapping prob- lem[C]//Proceedings of the National Conference on Artificial Intelligence. Menlo Park, USA: AAAI, 2002: 593-598. 被引量:1
  • 8Thrun S. Robotic mapping: A survey[M]//Exploring Artificial Intelligence in the New Millennium. San Francisco, USA: Mor- gan Kaufmann, 2002: 1-35. 被引量:1
  • 9Huang S D, Dissanayake G. Convergence and consistency anal- ysis for extended Kalman filter based SLAM[J]. IEEE Transac- tions on Robotics, 2007, 23(5): 1036-1049. 被引量:1
  • 10Thrun S, Burgard W, Fox D. Probabilistic robotics[M]. Cam- bridge, USA: MIT Press, 2005. 被引量:1

共引文献153

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部