摘要
运用相对同调代数的方法,推广了Gorenstein FP-内射模,提出Gorenstein FP_(n)-内射模和Gorenstein FP_(n)-内射维数的概念,并讨论它们的同调性质。当环是n-凝聚环和GFP_(n)I-封闭环时,得到Gorenstein FP_(n)-内射模的内射余可解性和Gorenstein FP_(n)-内射维数的等价刻画。
Using the method of relative homological algebra,the Gorenstein FP_(n)-injective modules and Gorenstein FP_(n)-injective dimensions are introduced,which generalize the Gorenstein FP_(n)-injective modules,and their homological properties are discussed.The Gorenstein injective module being injective coresolving and the characterizations of the Gorenstein injective dimension are obtained when the rings are n-coherent and GFP_(n)I-closed.
作者
程志强
赵国强
CHENG Zhiqiang;ZHAO Guoqiang(School of Sciences,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2022年第5期98-102,共5页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家自然科学基金资助项目(12061026)。