摘要
Wind erosion is one of the significant natural calamities worldwide, which degrades around one-third of global land. The eroded and suspended soil particles in the environment may cause health hazards, i.e.allergies and respiratory diseases, due to the presence of harmful contaminants, bacteria, and pollens.The present study evaluates the feasibility of microbially induced calcium carbonate precipitation(MICP)technique to mitigate wind-induced erosion of calcareous desert sand(Thar desert of Rajasthan province in India). The temperature during biotreatment was kept at 36℃ to stimulate the average temperature of the Thar desert. The spray method was used for bioaugmentation of Sporosarcina(S.) pasteurii and further treatment using chemical solutions. The chemical solution of 0.25 pore volume was sprayed continuously up to 5 d, 10 d, 15 d, and 20 d, using two different concentration ratios of urea and calcium chloride dihydrate viz 2:1 and 1:1. The biotreated samples were subjected to erosion testing(in the wind tunnel) at different wind speeds of 10 m/s, 20 m/s, and 30 m/s. The unconfined compressive strength of the biocemented crust was measured using a pocket penetrometer. The variation in calcite precipitation and microstructure(including the presence of crystalline minerals) of untreated as well as biotreated sand samples were determined through calcimeter, scanning electron microscope(SEM), and energydispersive X-ray spectroscope(EDX). The results demonstrated that the erosion of untreated sand increases with an increase in wind speeds. When compared to untreated sand, a lower erosion was observed in all biocemented sand samples, irrespective of treatment condition and wind speed. It was observed that the sample treated with 1:1 cementation solution for up to 5 d, was found to effectively resist erosion at a wind speed of 10 m/s. Moreover, a significant erosion resistance was ascertained in15 d and 20 d treated samples at higher wind speeds. The calcite content percentage, thickness of crust,bulk density, a
基金
Prestige Institute of Engineering, Management, and Research, Indore, India for their support
Guangdong Department of Science and Technology,China for"Overseas Famous Teacher Project"(Grant No.2020A1414010268)。