期刊文献+

Study of the intrinsic mechanisms of nickel additive for grain refinement and strength enhancement of laser aided additively manufactured Ti–6Al–4V 被引量:11

下载PDF
导出
摘要 It is well-known that grain refiners can tailor the microstructure and enhance the mechanical properties of titanium alloys fabricated by additive manufacturing(AM). However, the intrinsic mechanisms of Ni addition on AM-built Ti–6Al–4V alloy is not well established. This limits its industrial applications. This work systematically investigated the influence of Ni additive on Ti–6Al–4V alloy fabricated by laser aided additive manufacturing(LAAM). The results showed that Ni addition yields three key effects on the microstructural evolution of LAAM-built Ti–6Al–4V alloy.(a) Ni additive remarkably refines the prior-β grains, which is due to the widened solidification range. As the Ni addition increased from 0 to 2.5 wt. %, the major-axis length and aspect ratio of the prior-β grains reduced from over 1500 μm and 7 to 97.7 μm and1.46, respectively.(b) Ni additive can discernibly induce the formation of globular α phase,which is attributed to the enhanced concentration gradient between the β and α phases. This is the driving force of globularization according to the termination mass transfer theory. The aspect ratio of the α laths decreased from 4.14 to 2.79 as the Ni addition increased from 0 to2.5 wt. %.(c) Ni as a well-known β-stabilizer and it can remarkably increase the volume fraction of β phase. Room-temperature tensile results demonstrated an increase in mechanical strength and an almost linearly decreasing elongation with increasing Ni addition. A modified mathematical model was used to quantitatively analyze the strengthening mechanism. It was evident from the results that the α lath phase and the solid solutes contribute the most to the overall yield strength of the LAAM-built Ti–6Al–4V–x Ni alloys in this work. Furthermore, the decrease in elongation with increasing Ni addition is due to the deterioration in deformability of the β phase caused by a large amount of solid-solution Ni atoms. These findings can accelerate the development of additively manufactured titanium alloys.
出处 《International Journal of Extreme Manufacturing》 SCIE EI CAS 2022年第3期132-148,共17页 极端制造(英文)
基金 supported by the Agency for Science,Technology and Research(A*Star),Republic of Singapore under the IAF-PP program‘Integrated large format hybrid manufacturing using wire-fed and powder-blown technology for LAAM process’,Grant No.A1893a0031 the Academy of Sciences Project of Guangdong Province,Grant No.2016GDASRC-0105。
  • 相关文献

同被引文献126

引证文献11

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部