期刊文献+

基于多通道的边学习图卷积网络 被引量:4

Multi-channel based edge-learning graph convolutional network
下载PDF
导出
摘要 通常图的边包含了图的重要信息,然而目前大多数用于图学习的深度学习模型(如图卷积网络(graph convolutional network,GCN)和图注意力网络(graph attention network,GAT))没有充分利用多维边特征的特性;另一个问题是图中可能存在噪声,影响图学习的性能。使用多层感知机对图数据进行去噪优化处理,在GCN的基础上引入了多通道学习边特征的方法,对图的多维边属性进行编码,按原始图所包含的属性分别建模为多通道,每个通道对应一种边特征属性对图节点进行约束训练,可以让算法更合理地学习图中多维边特征,在Cora、Tox21、Freesolv等数据集上的实验证明了去噪方法与多通道方法的有效性。 Usually the edges of the graph contain important information of the graph. However, most of deep learning models for graph learning, such as graph convolutional network(GCN) and graph attention network(GAT), do not fully utilize the characteristics of multi-dimensional edge features. Another problem is that there may be noise in the graph that affects the performance of graph learning. Multilayer perceptron(MLP) was used to denoise and optimize the graph data, and a multi-channel learning edge feature method was introduced on the basis of GCN. The multi-dimensional edge attributes of the graph were encoded, and the attributes contained in the original graph were modeled as multi-channel. Each channel corresponds to an edge feature attribute to constrain the training of graph nodes, which allows the algorithm to learn multi-dimensional edge features in the graph more reasonably. Experiments based on Cora, Tox21, Freesolv and other datasets had proved the effectiveness of denoising methods and multi-channel methods.
作者 杨帅 王瑞琴 马辉 YANG Shuai;WANG Ruiqin;MA Hui(School of Information Engineering,Huzhou University,Huzhou 313000,China)
出处 《电信科学》 2022年第9期95-104,共10页 Telecommunications Science
基金 国家社会科学基金资助项目(No.20BTQ093) 浙江省自然科学基金资助项目(No.LY20F020006)。
关键词 图卷积网络 边特征 图去噪 多通道 边学习 graph convolutional network edge feature graph denoising multi-channel edge-learning
  • 相关文献

同被引文献13

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部