期刊文献+

基于NSGAⅡ的生鲜品冷链配送联合调度优化 被引量:3

Integrated scheduling optimization of fresh food cold chain distribution based on NSGAⅡ
下载PDF
导出
摘要 为解决当前生鲜电商企业存在的冷链配送成本高、运输效率低、供应链断链和产品价值损耗高等问题,设计包括合理的配送路线规划、订单加工排序以及加工人员配置的冷链配送联合调度方案。以产品交付时新鲜度最大和总成本最低为目标,建立多目标生鲜品冷链配送联合调度优化模型,且满足产品保质期、客户时间窗等约束。采用第二代非支配排序遗传算法(non-dominated sorting genetic algorithmⅡ,NSGAⅡ)求解模型,通过算例验证模型和算法的有效性。得到的帕累托解集表明,总成本与新鲜度存在效益相悖现象,提高少许的总成本可以大幅提高产品交付时的新鲜度。该模型在客户规模和配送调度范围较大的场景下,对生鲜品新鲜度的优化效果更佳,为企业在不同场景下的决策提供参考。 In order to solve the problems of the high cold chain distribution cost,the low transportation efficiency,the supply chain disconnection and the high product value loss of current fresh food e-commerce companies,a cold chain distribution integrated scheduling plan including the reasonable distribution route planning,order processing sequencing and process staffing is designed.With the goal of maximizing the product freshness and minimizing the total cost at delivery,a multi-objective fresh food cold chain distribution integrated scheduling model is established,and the product shelf life,the costumer time window and other constraints are met.The non-dominated sorting genetic algorithmⅡ(NSGAⅡ)is used to solve the model,and the effectiveness of the model and algorithm is verified through examples.The obtained Pareto solution set shows that,the total cost and the freshness are contradictory to the benefits,and a small increase in the total cost can greatly improve the product freshness at delivery.This model is more effective in optimizing the freshness of fresh food in scenarios with a large customer scale and distribution scheduling range,and provides reference for enterprises to make decisions in different scenarios.
作者 梁桂云 陈淮莉 LIANG Guiyun;CHEN Huaili(Institute of Logistics Science&Engineering,Shanghai Maritime University,Shanghai 201306,China)
出处 《上海海事大学学报》 北大核心 2022年第3期28-35,116,共9页 Journal of Shanghai Maritime University
基金 教育部人文社会科学研究规划(20YJC630215)。
关键词 冷链配送 联合调度 生鲜品 新鲜度 多目标优化 非支配排序遗传算法(NSGA) cold chain distribution integrated scheduling fresh food freshness multi-objective optimization non-dominated sorting genetic algorithm(NSGA)
  • 相关文献

参考文献6

二级参考文献33

共引文献75

同被引文献42

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部