期刊文献+

基于训练-推理解耦架构的2D-3D医学图像配准 被引量:3

2D-3D Medical Image Registration Based on Training-Inference Decoupling Architecture
原文传递
导出
摘要 2D-3D医学图像配准在解决放射治疗的摆位验证问题上发挥着至关重要的作用。针对现有配准方法精度不高、耗时较长等问题,提出一种基于训练-推理解耦架构的2D-3D医学图像配准方法。该方法在训练阶段采用多分支结构,利用多尺度卷积增强特征多样性,提高配准精度;在推理阶段,利用重参数化将多分支结构转换为单路结构,加快配准速度;另外,引入自适应激活函数Meta-ACON,提高网络的非线性表达能力。在胸部和骨盆两个数据集上进行训练和测试,实验结果表明,所提方法预测结果的位移误差约为0.08 mm,角度误差约为0.05°,配准时间仅需26 ms。所提方法有效解决了摆位验证中的医学图像配准问题,不仅提高了精度,还满足了临床实时性要求。 The registration of 2D-3D medical images is crucial in solving radiotherapy positioning verification.A 2D-3D medical image registration approach based on training-inference decoupling architecture is proposed to address the issues of low accuracy and time-consuming processes.The multibranch structure and multiscale convolution were employed in the training phase to enhance feature diversity and improve registration accuracy.During the inference phase,the multibranch structure was reparameterized into a single-channel structure to speed up the registration speed.Additionally,an adaptive activation function,Meta-ACON,was used to increase the network’s nonlinear expression.Two datasets of the chest and pelvis were used for training and testing.The experimental results show that the mean translation error of the proposed method is approximately0.08 mm,the mean angular error is approximately 0.05°,and the registration time reaches 26 ms.The proposed method significantly improves the accuracy of medical image registration in positioning verification while meeting the real-time requirements of clinical applications.
作者 李文举 孔德卿 曹国刚 李思诚 戴翠霞 Li Wenjü;Kong Deqing;Cao Guogang;Li Sicheng;Dai Cuixia(School of Computer Science&Information Engineering,Shanghai Institute of Technology,Shanghai 201418,China;School of Sciences,Shanghai Institute of Technology,Shanghai 201418,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2022年第16期207-216,共10页 Laser & Optoelectronics Progress
基金 国家自然科学基金(62175156,61675134,81827807) 上海市科委科技创新行动计划(19441905800) 温州医科大学重点实验室开放项目(K181002)。
关键词 图像处理 2D-3D配准 卷积神经网络 重参数化 激活函数 image processing 2D-3D registration convolution neural network re-parameterization activate function
  • 相关文献

参考文献7

二级参考文献58

  • 1李欣,周凌宏,甄鑫,卢文婷.2D/3D刚性图像配准在肿瘤放疗计划中的应用[J].中国医学物理学杂志,2011,28(2):2510-2514. 被引量:1
  • 2张龙江,祁吉.对比剂肾病:一个值得关注的问题[J].中华放射学杂志,2007,41(8):882-884. 被引量:69
  • 3张翼,王满宁,宋志坚.脊柱手术导航中分步式2D/3D图像配准方法[J].计算机辅助设计与图形学学报,2007,19(9):1154-1158. 被引量:11
  • 4Eisbruch A. Clinical aspects of IMRT for head-and-neck cancer [J]. Med Dosim, 2002, 27: 99-104. 被引量:1
  • 5ICRU Report50[S]. MD: International Commission on Radiation Units and Measurements, 1993. 被引量:1
  • 6ICRU Report62[S]. MD: International Commission on Radiation Units and Measurements, 1999. 被引量:1
  • 7Silanpaa J, Chang J, Mageras G, et al. Developments in megavohage CBCT with an amorphous silicon EPID: reduction of exposure and synchronization with respiratory gating [J]. Mad Phys, 2005, 32: 819. 被引量:1
  • 8Lu H, Lin H, Feng G, et al. Interfractional and intralractional errors as- sessed by daily cone-beam computed tomography in nasopharyngeal carcinoma treated with intensity-modulated radiation therapy.A prospective study [J]. J Radiat Res, 2012, 53(6): 954-960. 被引量:1
  • 9ICRU Report83 [S]. MD: Intemational Commission on Radiation Units and Measurements, 2010. 被引量:1
  • 10Di Y, Vieini F, Wong J, et al. Adaptive radiation therapy[J]. Plays Med Biol, 1997, 42(1): 123-132. 被引量:1

共引文献60

同被引文献14

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部