摘要
针对双峰法解调低精细度光纤法布里-珀罗(FP)传感器时,峰值定位误差过大导致的解算不准确问题,提出了一种双峰-干涉级次定位联合解调算法。首先,在FP传感器的反射光谱中定位两个波峰,通过常规双峰法估算出腔长;其次,定位一个波谷并引入波谷干涉级次,得到对应不同干涉级次的腔长取值序列;最后,从该腔长序列中寻找与双峰法估算结果最接近的腔长,实现腔长解调。为验证算法的可行性与优越性,对单模光纤制作的低精细度FP传感器进行解调仿真和实验验证。所提方法的解调精度优于2.3 nm,远高于常规双峰法。该算法可用于精确解调腔长在55~135μm范围内的低精细度FP传感器。
To solve the inaccurate calculation problem caused by the large peak positioning error when the peak-to-peak(P2P)method is employed to demodulate low-finesse fiber-optic Fabry-Perot(FP)sensors,this paper proposes a P2P and interference-order positioning joint demodulation algorithm.For this purpose,two peaks are positioned in the reflection spectrum of the FP sensor,and cavity length is estimated by the conventional P2P method.Then,valley interference orders are introduced after a valley is positioned to generate a sequence of possible cavity length values corresponding to different interference orders.Finally,cavity length demodulation is achieved by retrieving the value in the cavity length sequence closest to the result estimated by the P2P method.To demonstrate the feasibility and superiority of the algorithm,this study also conducts demodulation simulations and experimental verifications of low-fineness FP sensors made from single-mode fibers.The experimental demodulation accuracy,better than 2.3 nm,is much higher than that of the conventional P2P method.The proposed algorithm can be used to accurately demodulate low-finesse FP sensors with a cavity length of 55-135μm.
作者
王东平
王伟
张军英
张雄星
陈海滨
郭子龙
Wang Dongping;Wang Wei;Zhang Junying;Zhang Xiongxing;Chen Haibin;Guo Zilong(School of Defense Science and Technology,Xi′an Technological University,Xi′an 710021,Shaanxi,China;School of Optoelectronic Engineering,Xi′an Technological University,Xi′an 710021,Shaanxi,China)
出处
《光学学报》
EI
CAS
CSCD
北大核心
2022年第16期213-219,共7页
Acta Optica Sinica
基金
陕西省自然科学基础研究计划(2021JM-438)
陕西省教育厅重点科学研究计划(20JS060)。
关键词
测量
光纤传感器
法布里-珀罗腔
双峰法
相位法
腔长解调
干涉级次
measurement
fiber-optic sensor
Fabry-Perot cavity
peak-to-peak method
phase method
cavity length demodulation
interference order