期刊文献+

Feature Layer Fusion of Linear Features and Empirical Mode Decomposition of Human EMG Signal

下载PDF
导出
摘要 To explore the influence of the fusion of different features on recognition,this paper took the electromyography(EMG)signals of rectus femoris under different motions(walk,step,ramp,squat,and sitting)as samples,linear features(time-domain features(variance(VAR)and root mean square(RMS)),frequency-domain features(mean frequency(MF)and mean power frequency(MPF)),and nonlinear features(empirical mode decomposition(EMD))of the samples were extracted.Two feature fusion algorithms,the series splicing method and complex vector method,were designed,which were verified by a double hidden layer(BP)error back propagation neural network.Results show that with the increase of the types and complexity of feature fusions,the recognition rate of the EMG signal to actions is gradually improved.When the EMG signal is used in the series splicing method,the recognition rate of time-domain+frequency-domain+empirical mode decomposition(TD+FD+EMD)splicing is the highest,and the average recognition rate is 92.32%.And this rate is raised to 96.1%by using the complex vector method,and the variance of the BP system is also reduced.
出处 《Journal of Electronic Science and Technology》 CAS CSCD 2022年第3期257-269,共13页 电子科技学刊(英文版)
基金 support by the Aerospace Research Project of China under Grant No.020202。
  • 相关文献

参考文献3

二级参考文献26

  • 1DELUCA C. Physiology and mathematics of myoelectirc signals[J]. IEEE Trans. on Biomedicine Engineering, 1979, 26(3): 313-325. 被引量:1
  • 2ZHANG F, LI P F, HOU Z G, et al. sEMG based continuous estimation of joint angles of human legs by using BP neural network[J]. Neurocomputing, 2012, 78(1): 139-148. 被引量:1
  • 3LOVELL G A, BLANCH P D, BARNES C J. EMG of the hip adductor muscles in six clinical examination tests [J]. Physical Therapy in Sport, 2012, 13(3): 134-140. 被引量:1
  • 4PHINYOMARK A, PHUKPATTARANONT P, LIMSAKUL C. Fractal analysis features for weak and single-channel upper-limb EMG signals [J]. Expert Systems with Applications, 2012(12): 11156-11163. 被引量:1
  • 5HUANG B, KUNOTH A. An optimization based empirical mode decomposition scheme[J]. Journal of Computational and Applied Mathematics, 2013, 240: 174-183. 被引量:1
  • 6XU G, WANG X, XU X, et al. Improved EMD for the analysis of FM signals [J]. Mechanical systems and Signal Processing. 2012, 33: 181-196. 被引量:1
  • 7CHENG J, YU D, YANG Y, et al. Research on the intrinsic mode function(IMF) criterion in EMD method [J] Mechanical Systems and Signal Processing, 2006, 20(4): 817-824. 被引量:1
  • 8HUANG W, SHEN Z, HUANG N E, et al. Nonlinear indicial response of complex nonstationary oscillations as pulmonary pretension responding to step hypoxia [J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(5): 1834-1839. 被引量:1
  • 9MONTILLET J.-P, TREGONING P, MCCLUSKY S, et al Extracting white noise statistics in GPS coordinate time series [J]. IEEE Geoscience and Remote Eensing Letters, 2013, 10(3): 563-567. 被引量:1
  • 10B.K.Ko,H.S.Yang.Finger mouse and gesture recog-nitionsystemas a new Human computer interface[].Computer Graphics.1997 被引量:1

共引文献95

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部