期刊文献+

Updated Simulation of Tropospheric Ozone and Its Radiative Forcing over the Globe and China Based on a Newly Developed Chemistry–Climate Model 被引量:1

原文传递
导出
摘要 This study evaluates the performance of a newly developed atmospheric chemistry–climate model,BCCAGCM_CUACE2.0(Beijing Climate Center Atmospheric General Circulation Model_China Meteorological Administration Unified Atmospheric Chemistry Environment)model,for determining past(2010)and future(2050)tropospheric ozone(O_(3))levels.The radiative forcing(RF),effective radiative forcing(ERF),and rapid adjustments(RAs,both atmospheric and cloud)due to changes in tropospheric O_(3)are then simulated by using the model.The results show that the model reproduces the tropospheric O_(3)distribution and the seasonal changes in O_(3)surface concentration in 2010 reasonably compared with site observations throughout China.The global annual mean burden of tropospheric O_(3)is simulated to have increased by 14.1 DU in 2010 relative to pre-industrial time,particularly in the Northern Hemisphere.Over the same period,tropospheric O_(3)burden has increased by 21.1 DU in China,with the largest increase occurring over Southeast China.Although the simulated tropospheric O_(3)burden exhibits a declining trend in global mean in the future,it increases over South Asia and Africa,according to the Representative Concentration Pathway(RCP)4.5 and 8.5 scenarios.The global annual mean ERF of tropospheric O_(3)is estimated to be 0.25 W m^(−2)in 1850−2010,and it is 0.50 W m^(−2)over China.The corresponding atmospheric and cloud RAs caused by the increase of tropospheric O_(3)are estimated to be 0.02 and 0.03 W m^(−2),respectively.Under the RCP2.6,RCP4.5,RCP6.0,and RCP8.5 scenarios,the annual mean tropospheric O_(3)ERFs are projected to be 0.29(0.24),0.18(0.32),0.23(0.32),and 0.25(0.01)W m^(−2)over the globe(China),respectively.
出处 《Journal of Meteorological Research》 SCIE CSCD 2022年第4期553-573,共21页 气象学报(英文版)
基金 Supported by the National Key Research and Development Program of China(2017YFA0603502) Key National Natural Science Foundation of China(91644211 and 41975168) Science and Technology Development Fund of Chinese Academy of Meteorological Sciences(2021KJ004 and 2022KJ019) Science and Technology Fund of Beijing Meteorological Service(BMBKJ202003007).
  • 相关文献

参考文献10

二级参考文献188

共引文献317

同被引文献58

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部