摘要
研究了在边故障条件下3元n立方体中两条等长不交覆盖路问题.利用数学归纳法得到以下结论:当n≥2,边故障集|F|≤n-2时,在Q_(n)^(3)中任意三个顶点x,y_(1),y_(2),则在Q_(n)^(3)-F中存在两条内部顶点不交的等长覆盖路P_(1)=(x,…y_(1_)和P_(2)=(x,…y_(2)).
The problem of two equal-length disjoint covering paths in 3-ary n cube under the condition of edge fault is studied,and the following conclusions are obtained by mathematical induction:Let Q_(n)^(3) be the 3-ary n cube,where n≥2,F be any subset of edges with|F|≤n-2.Assume that x,y_(1) and y2be pairwise distinct vertices of Q_(n)^(3).ThenQ_(n)^(3)-F can be found two vertex-disjoint and equal-length covering paths P_(1)=(x,…,y_(1))and P_(2)=(x,…,y2).
作者
佘卫强
SHE Weiqiang(College of General Education,Zhangzhou Institute of Technology,Zhangzhou,Fujian 363000,China)
出处
《闽南师范大学学报(自然科学版)》
2022年第3期6-12,共7页
Journal of Minnan Normal University:Natural Science
基金
国家自然科学基金项目(61603174)
福建省自然科学基金(2020J01793)。
关键词
3元n立方体
容错
点不交路
等长
拓扑网络
3-ary n cube
fault-tolerant
vertex-disjoint path
equal-length
network topology