摘要
针对现有基于可见光的目标检测算法存在的不足,提出了一种红外和可见光图像融合的目标检测方法。该方法将深度可分离卷积与残差结构相结合,构建并列的高效率特征提取网络,分别提取红外和可见光图像目标信息;同时,引入自适应特征融合模块以自主学习的方式融合两支路对应尺度的特征,使两类图像信息互补;最后,利用特征金字塔结构将深层特征逐层与浅层融合,提升网络对不同尺度目标的检测精度。实验结果表明,所提网络能够充分融合红外和可见光图像中的有效信息,并在保障精度与效率的前提下实现目标识别与定位;同时,在实际变电站设备检测场景中,该网络也体现出较好的鲁棒性和泛化能力,可以高效完成检测任务。
A target detection method based on infrared and visible image fusion is proposed to overcome the shortcomings of the existing target detection algorithms based on visible light. In this method, depth separable convolution and the residual structure are combined to construct a parallel high-efficiency feature extraction network to extract the object information of infrared and visible images, respectively. Simultaneously, the adaptive feature fusion module is introduced to fuse the features of the corresponding scales of the two branches through autonomous learning such that the two types of image information are complementary.Finally, the deep and shallow features are fused layer by layer using the feature pyramid structure to improve the detection accuracy of different scale targets. Experimental results show that the proposed network can completely integrate the effective information in infrared and optical images and realize target recognition and location on the premise of ensuring accuracy and efficiency. Moreover, in the actual substation equipment detection scene, the network shows good robustness and generalization ability and can efficiently complete the detection task.
作者
邝楚文
何望
KUANG Chuwen;HE Wang(Huizhou Economics and Polytechnic College,Huizhou 516057,China;School of Computer Science&Technology,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《红外技术》
CSCD
北大核心
2022年第9期912-919,共8页
Infrared Technology
基金
国家自然科学基金项目(61972169)。
关键词
目标检测
红外与可见光图像
深度学习
自适应融合
object detection
infrared and visible light image
deep learning
adaptive fusion