期刊文献+

采用残差变化控制的自适应稀疏信道估计

Adaptive Sparse Channel Estimation Based on Residual Change Control
下载PDF
导出
摘要 针对传统压缩感知信道估计对稀疏度信息依赖和稀疏度自适应信道估计在低信噪比时抗噪能力较差的问题,提出了一种采用残差变化控制的稀疏度自适应的压缩感知信道估计算法。该算法在传统的压缩感知信道估计的基础上引入残差变化控制,通过比较每次迭代下的残差变化的幅度来控制信道估计的迭代次数,提高信道估计的自适应性和鲁棒性。同时,为解决传统稀疏度自适应压缩感知信道估计抗噪能力较差的问题,利用正交匹配追踪提高算法的抗噪声性能。相比于传统的稀疏度自适应匹配追踪(Sparsity Adaptive Matching Pursuit,SAMP)算法,所提算法约有4 dB的性能优势,且算法复杂度更低。 In view of the problem that the traditional channel estimation algorithms based compressed sensing rely on the prior knowledge of the sparsity of the channel,and the sparsity adaptive channel estimation has poor anti-noise ability at low signal-to-noise ratio,a new sparsity adaptive compressed sensing channel estimation algorithm based on residual change control is proposed.In this algorithm,residual change control is introduced based on the traditional channel estimation of compressed sensing.By comparing the amplitude of residual change in each iteration,the number of iterations of channel estimation is controlled,and the adaptability and robustness of channel estimation are improved.In order to solve the problem of poor anti-noise ability of traditional sparse adaptive compressed sensing channel estimation,the orthogonal matching pursuit(OMP)is used to improve the anti-noise performance of the algorithm.Compared with the traditional sparsity adaptive matching pursuit(SAMP)algorithm,the proposed algorithm has a performance advantage of about 4 dB and lower complexity.
作者 方海涛 卞鑫 李明齐 FANG Haitao;BIAN Xin;LI Mingqi(Shanghai Advanced Research Institute,Chinese Academy of Sciences,Shanghai 201210,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《电讯技术》 北大核心 2022年第9期1309-1314,共6页 Telecommunication Engineering
基金 国家重点研发计划(2019YFB1802703)。
关键词 压缩感知 稀疏信道估计 残差变化控制 稀疏度自适应 compressed sensing sparsity channel estimation residual change control sparsity adaptive
  • 相关文献

参考文献4

二级参考文献15

  • 1WU C J,LIN D W. Sparse channel estimation for OFDM transmission based on representative subspace fitting [ C ] //Proc of IEEE 61 st Veh Technol Conf. Piscataway : IEEE ,2005 ,1:495 - 499. 被引量:1
  • 2RAGHAVENDRA M R, GIRIDHAR K. Improving channel estimation in OFDM systems for sparse muhipath channels[ J]. IEEE Signal Processing Letters ,2005,12( 1 ) :52 - 55. 被引量:1
  • 3TAUBOCK G,HLAWATSCH F,EIWEN D,et al. Compressive estimation of doubly selective channels in multicarrier systems:leakage effects and sparsity-enhancing processing [ J ]. IEEE Journal of Selected Topics in Signal Processing,2010,4 ( 2 ) : 255 - 271. 被引量:1
  • 4BERGER C R,ZHOU S, CHEN W,et al. Sparse channel estimation for OFDM : Over-complete dictionaries and super-resolution [ C ]// Proc of IEEE Workshop on Signal Processing Advances in Wireless Communications. Perugia, Italy : IEEE,2009,6 : 196 - 200. 被引量:1
  • 5DONOHO D L. Compressed sensing[ J]. IEEE Trans on Info Theory,2006,52(4) :1289 - 1306. 被引量:1
  • 6BARANIUK R G. Compressive sensing[ J ].IEEE Signal Processing Magazine,2007,24 (4) : 118 - 120,124. 被引量:1
  • 7CANDES E,TAO T. Near optimal signal recovery from random projections:universal encoding strategies? [ Jl. IEEE Trans on Information Theory ,2006,52 ( 12 ) :5406 - 5425. 被引量:1
  • 8CANDES E,ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measuremens[ J]. Communications on Pure and Applied Mathematics, 2006,59 ( 8 ) : 1207 - 1223. 被引量:1
  • 9MALLAT S,ZHANG Z. Mathcing pursuit with time-frequency dictionaries[J]. IEEE Trans on Signal Processing,1993,41 (12) :3393 -3415. 被引量:1
  • 10TROPP J A, GILBERT A C. Signal recovery from random measurements via orthogonal matching pursuit[ J]. IEEE Trans on Information Theory ,2007,53 ( 12 ) :4655 - 4666. 被引量:1

共引文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部