期刊文献+

Classification of steel based on laser-induced breakdown spectroscopy combined with restricted Boltzmann machine and support vector machine 被引量:1

下载PDF
导出
摘要 In recent years,a laser-induced breakdown spectrometer(LIBS)combined with machine learning has been widely developed for steel classification.However,the much redundant information of LIBS spectra increases the computation complexity for classification.In this work,restricted Boltzmann machines(RBM)and principal component analysis(PCA)were used for dimension reduction of datasets,respectively.Then,a support vector machine(SVM)was adopted to process feature information.Two models(RBM-SVM and PCA-SVM)are compared in terms of performance.After optimization,the accuracy of the RBM-SVM model can achieve 100%,and the maximum dimension reduction time is 33.18 s,which is nearly half of that of the PCA model(53.19 s).These results preliminarily indicate that LIBS combined with RBM-SVM has great potential in the real-time classification of steel.
作者 Qingdong ZENG Guanghui CHEN Wenxin LI Zitao LI Juhong TONG Mengtian YUAN Boyun WANG Honghua MA Yang LIU Lianbo GUO Huaqing YU 曾庆栋;陈光辉;李文鑫;李孜涛;童巨红;袁梦甜;王波云;马洪华;刘洋;郭连波;余华清(School of Physics and Electronic-information Engineering,Hubei Engineering University,Xiaogan 432000,People's Republic of China;Wuhan National Laboratory for Optoelectronics(WNLO),Huazhong University of Science and Technology,Wuhan 430074,People's Republic of China;Faculty of Physics and Electronic Science,Hubei University,Wuhan 430062,People's Republic of China)
出处 《Plasma Science and Technology》 SCIE EI CAS CSCD 2022年第8期71-76,共6页 等离子体科学和技术(英文版)
基金 supported by National Natural Science Foundation of China(No.61705064) the Natural Science Foundation of Hubei Province(No.2021CFB607) the Natural Science Foundation of Xiaogan City(No.XGKJ2021010003) the Project of the Hubei Provincial Department of Education(No.T201617)。
  • 相关文献

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部