摘要
IT智能平台的广泛应用使得大规模空间网络信息安全问题越来越突出。为了能够及时发现网络风险,采取有效的应对策略,提出了IT智能平台大规模空间网络信息安全评估方法。该方法通过计算初选指标间的关联度,并与临界值对比,完成评估指标归纳和整理。针对评估指标,采用5种攻击方式对IT智能平台大规模空间网络实施模拟攻击。采集攻击过程中评估指标对应的数值,以评估指标数据为输入值,利用基于萤火虫-BP神经网络的评估模型实现网络信息安全评估,输出安全评估值,并转化为对应的安全等级。结果表明:应用提出的评估方法,数据采集完整性较高,信息传输速率较高,响应时间较短,评估出的20组数据样本中,大部分为一般安全及以上,只有3组数据样本为危险,2组数据样本非常危险,由此认为网络较为安全。
The wide application of IT intelligent platform makes the problem of information security of large-scale space network more and more prominent.In order to discover network risks in time and take effective countermeasures,a large-scale space network information security evaluation method of IT intelligent platform is proposed.This method completes the induction and sorting of evaluation indexes by calculating the correlation degree between the primary indexes and comparing it with the critical value.According to the evaluation indexes,five attack methods are used to simulate the attack on the large-scale space network of IT intelligent platform.The corresponding values of the evaluation indexes during the attack process are collec-ted,and then the evaluation index data is taken as the input value,and the evaluation model based on firefly-BP neural network is used to realize the network information security evaluation,thus outputting the security evaluation value and transforming it into the corresponding security level.The results show that using the proposed evaluation method,the integrity of data collection is relatively high,the information transmission rate is relatively high,and the response time is relatively short.Most of the 20 groups of data samples are evaluated as generally safe,and only 3 groups of data samples are classified as dangerous and 2,very dangerous.Therefore,the network is considered to be relatively safe.
作者
方芳
马莉
FANG Fang;Ma Li(Anhui Technical College of Mechanical and Electrical Engineering,Wuhu 241000)
出处
《常州工学院学报》
2022年第4期27-33,共7页
Journal of Changzhou Institute of Technology
关键词
IT智能平台
大规模空间网络
信息安全
评估指标
萤火虫算法
BP神经网络
评估方法
IT intelligent platform
large-scale space network
information security
evaluation indicators
firefly algorithm
BP neural network
evaluation method