摘要
气体绝缘组合电器(gas insulated switchgear,GIS)在运行中常常会遭受雷电过电压侵袭,此时其中的自由金属颗粒缺陷会使得SF设备绝缘性能急剧降低,威胁设备的运行安全。基于冲击叠加相位可调的交流与冲击叠加试验系统,采用脉冲电流法试验研究了冲击叠加相位、金属颗粒尺寸、金属颗粒数量对交流与雷电冲击叠加电压下SF中自由金属颗粒局部放电激发特性的影响。试验结果表明,冲击叠加相位、金属颗粒尺寸和数量对局部放电激发特性影响显著。负极性雷电冲击叠加在交流电压负半周后,可激发颗粒后续的交流局部放电,且冲击叠加在270°相位所激发的放电最为剧烈;随着颗粒尺寸增大,冲击下金属颗粒局部放电更难激发,但激发后局放更为剧烈;随着颗粒数量增加,冲击下金属颗粒局部放电更容易激发,且放电更为活跃;并从空间电荷角度对局部放电的激发和发展机理进行了解释。该研究工作对于深入理解与实际工况更为契合的叠加电压下SF中自由金属颗粒局部放电特性具有重要的理论和工程意义。
Gas insulated switchgear(GIS) often suffers from lightning overvoltage during operation, where the free metal particle defects will sharply reduce the insulation performance, threatening the operation safety of the SFequipment. In this paper, based on an AC and impulse superposition test system with adjustable impulse superposition phase, the effects of impulse superposition phase, metal particle size and number on the partial discharge(PD) excitation characteristics of free metal particles in SFunder AC and lightning impulse(LI) superposition voltage are studied by the pulse current method. The experimental results show that the studied factors have significant effects on the PD excitation characteristics of particles. The negative LI can stimulate the subsequent AC PD of particles when superimposed on the negative half cycle of AC voltage, most intensely under the superposition phase of 270°. With the increase of particle size, PD is more difficult to excite by LI but more intense once excited. With the increase of particle number, PD is easier to excite and more active. The excitation and development mechanism of PD is explained by using the space charge theory. This research has crucial theoretical and engineering meaning for in-depth understanding of the PD characteristics of free metal particles in SFunder superposition voltage that is more consistent with the actual working conditions.
作者
树婷
杨玥坪
郭若琛
吴玖汕
张轩瑞
李军浩
SHU Ting;YANG Yueping;GUO Ruochen;WU Jiushan;ZHANG Xuanrui;LI Junhao(School of Electrical Engineering,Xi'an Jiaotong University,Xi'an 710049,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2022年第8期3305-3315,共11页
High Voltage Engineering
基金
国家自然科学基金(51877169)。