期刊文献+

磁头磁盘接触碰撞过程中的摩擦生热分析

Thermal Analysis of Friction Heat Induced by Head/Disk Contact
下载PDF
导出
摘要 为了提高磁存储硬盘的储存密度,磁头与磁盘之间的飞行高度越来越小,随之而来的是磁头与磁盘接触碰撞的几率越来越大,磁头与磁盘接触碰撞伴随着摩擦生热现象的发生。摩擦生热引起的温升会导致磁头磁盘界面间产生局部高温,引起润滑剂迁移等现象,甚至会破坏磁盘的运行状态。通过建立磁头磁盘接触碰撞有限元模型和磁头磁盘接触碰撞分子动力学模型,研究磁头磁盘干涉深度、磁头运行速度在磁头磁盘接触碰撞过程中对温升的影响:有限元和分子动力学仿真结果均表明磁头磁盘干涉深度越大,摩擦生热引起的局部温升越大;磁头运行速度越大,摩擦生热引起的局部温升越大。该研究成果能为后续研究磁头磁盘摩擦温升对润滑剂迁移和耗散的研究提供支撑。 In order to increase the storage density of the hard disk drive,the flying height between the head and the disk is getting smaller and smaller.With such a small spacing,the head/disk contact is likely to occur,which will induce the temperature in⁃crease caused by friction.The temperature rise generated by frictional heat may cause lubricant transfer and lubricant depletion,furthermore,may destroy the operating state of the disk.A finite element model and a molecular dynamics model of head/disk contact were developed to study the effect of the interference depth and the running speed of the disk on temperature rise.The re⁃sults show that with an increase in the interference depth,the temperature rise caused by friction heat will increase;In addition,the higher the running velocity of the disk,the higher of the local temperature rise.The results of this paper can be used to study the effect of temperature rise caused by friction on lubricant transfer and lubricant depletion.
作者 唐正强 贾通 周东东 吴兵 TANG Zheng-qiang;JIA Tong;ZHOU Dong-dong;WU Bing(School of Mechanical Engineering,Guizhou University,Guizhou Guiyang 550025,China)
出处 《机械设计与制造》 北大核心 2022年第9期149-152,共4页 Machinery Design & Manufacture
基金 国家自然科学基金项目(51505093) 贵州省教育厅青年科技人才成长项目(黔教合KY字[2016]116) 贵州省科技计划项目[2016]1035。
关键词 磁头磁盘 摩擦生热 有限元 分子动力学 Hard Disk Drive Friction Heating Finite Element Method Molecular Dynamics
  • 相关文献

参考文献2

二级参考文献38

  • 1W.M. Thomas, E.D. Nicholas, J.C. Needham, M.G. Murch, P. Templesmith, C.J. Dawes, GB Patent Application No. 9,125,978.8, Dec 1991. 被引量:1
  • 2Z. Feng, X.L. Wang, S.A. David, P.S. Sklad, Sci. Techno!. Weld. Join. 12, 348 (2007). 被引量:1
  • 3X.K. Zhu, Y.J. Chao, J. Mater. Process. Techno!. 146, 263 (2004). 被引量:1
  • 4M.Z.H. Khandkar, J.A. Khan, A.P. Reynolds, Sci. Technol Weld. Join. 8, 165 (2003). 被引量:1
  • 5P. Prasanna, B.S. Rao, G.K.M. Rao, Int. J. Adv. Manuf. Techno!. 51, 925 (2010). 被引量:1
  • 6R. Nandan, G.G. Roy, T. Debroy, Metal!. Mater. Trans. A 37, 1247 (2006). 被引量:1
  • 7P.A. Colegrove, H.R. Shercliff, Sci. Techno!' Weld. Join. 11, 429 (2006). 被引量:1
  • 8P. Ulysse, Int. J. Mach. Tools Manuf. 42, 1549 (2002). 被引量:1
  • 9E. Ranjbarnodeh, S. Hanke, S. Weiss, A. Fischer, Int. J. Miner. Metall. Mater. 19, 923 (2012). 被引量:1
  • 10Y.H. Yau, A. Hussain, R.K. Lalwani, H.K. Chan, N. Hakimi, Int. J. Miner. Metall. Mater. 20, 779 (2013). 被引量:1

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部