期刊文献+

High-Order Symplectic Schemes for Stochastic Hamiltonian Systems 被引量:1

原文传递
导出
摘要 The construction of symplectic numerical schemes for stochastic Hamiltonian systems is studied.An approach based on generating functions method is proposed to generate the stochastic symplectic integration of any desired order.In general the proposed symplectic schemes are fully implicit,and they become computationally expensive for mean square orders greater than two.However,for stochastic Hamiltonian systems preserving Hamiltonian functions,the high-order symplectic methods have simpler forms than the explicit Taylor expansion schemes.A theoretical analysis of the convergence and numerical simulations are reported for several symplectic integrators.The numerical case studies confirm that the symplectic methods are efficient computational tools for long-term simulations.
出处 《Communications in Computational Physics》 SCIE 2014年第6期169-200,共32页 计算物理通讯(英文)
  • 相关文献

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部