摘要
爆炸冲击波作用头部导致的颅脑冲击伤已成为战斗医学救治中的“标志性损伤”,而爆炸冲击波作用头部时与头部相互作用过程及致伤机理尚不明确.为了找出爆炸冲击波与头部相互作用时空气压力场变化规律及颅脑动态响应特性,进行了爆炸冲击波作用头部数值模拟研究.建立了具有典型人体头部结构的三维有限元模型,针对Nahum尸体头部撞击实验对头部有限元模型的有效性进行了验证;基于验证的头部有限元模型,对爆炸冲击波作用头部进行数值模拟,得出了冲击波与头部相互作用时空气压力场变化规律;对头部颅内压变化情况进行分析,得出了冲击波从正面作用头部后额叶、顶叶脑组织压力会出现高频的正负压周期性波动,且会出现较高的压力峰值,为易受损区域.
Blast-induced traumatic brain injury(bTBI) is a symbol injury in battle physic-cure area, and the injury mechanism is in leading strings. In order to find out the variation law of the space-time pressure field and the dynamic response characteristics of the brain when the blast waves interact with the head, a numerical simulation was carried out to analyze the process of blast wave acting on the head. Firstly, a three-dimensional finite element model with typical human head structure was established, and the validity of the finite element model was verified according to Nahum’s head impact experiments. And then, the simulation was carried out to analyze the impact process of blast waves on human head, concluding the variation law of the space-time pressure field with the interaction of blast waves and the head. Finally, the change of intracranial pressure of head was analyzed. The results show that, after the shock wave impacts on the head, the frontal and parietal lobe of the brain tissue pressure can appear high-frequency pressure cyclical fluctuations, and there will be a higher peak pressure to injure the damageable areas.
作者
张文超
王舒
梁增友
覃彬
卢海涛
陈新元
卢文杰
ZHANG Wenchao;WANG Shu;LIANG Zengyou;QIN Bin;LU Haitao;CHEN Xinyuan;LU Wenjie(College of Mechanical and Electrical Engineering,North University of China,Taiyuan,Shanxi 030051,China;Science and Technology on Transient Impact Laboratory,Beijing 102202,China;Unit 93320 of PLA,Tsitsihar,Heilongjiang 161000,China;Henan North Hongyang Electromechanical Co.Ltd.,Nanyang,Henan 473000,China)
出处
《北京理工大学学报》
EI
CAS
CSCD
北大核心
2022年第9期881-890,共10页
Transactions of Beijing Institute of Technology
基金
国家重点研发计划课题资助项目(2018YFC0807206)。
关键词
爆炸冲击波
头部有限元模型
脑组织压力
颅脑冲击伤
数值模拟
blast shock waves
head finite element model
brain tissue pressure
traumatic brain injury
numerical simulation