期刊文献+

基于U-Net改进的多尺度融合超声神经分割算法研究 被引量:1

An ultrasonic neural segmentation algorithm based on U-Net improved multi-scale fusion
下载PDF
导出
摘要 大量传统的颈部超声神经检测算法,检测敏感性低,假阳性数量大,低层特征利用率不足。而颈部超声图像数量较少,边缘模糊且对噪声敏感。对此,提出一种改进型U-Net分支融合算法:改进损失函数,获得高质量的候选样本;使用多尺度卷积结构替换原结构中普通卷积层,增强特征提取能力;结合扩张卷积替换中、深层池化操作,提高低层特征利用率。通过对比实验验证了所提算法的算法性能。实验表明,与传统的U-Net和SegNet卷积网络对于小尺寸超声神经分割的结果相比,所提算法的分割效果较两者分别提升了近9%和17%,且对于正常尺寸和小尺寸的神经分割均有较高的分割精度。 Traditional cervical ultrasound nerve detection algorithms have low detection sensitivity,a large number of false positives,and insufficient utilization of low-level features.However,the number of ultrasound images of the neck is small,and the edges are blurred and sensitive to noise.Therefore,an improved U-Net branch fusion algorithm is proposed.It improves the loss function to obtain high-quality candidate samples,replaces the ordinary convolutional layer in the original structure with a multi-scale convolution structure to enhance feature extraction,and combines expanded convolution to replace middle and deep pooling operations so as to improve the utilization of low-level features.The performance of the proposed algorithm is verified through comparative experiments.The experimental results show that,compared with the traditional U-Net and SegNet convolution networks,the proposal improves the small-size ultrasonic neural segmentation effect by nearly 9%and 17%respectively,and the segmentation accuracy is higher for normal-size and small-size neural segmentation.
作者 张克双 邬春学 张生 林晓 ZHANG Ke-shuang;WU Chun-xue;ZHANG Sheng;LIN Xiao(School of Optical-Electrical and Computer Engineering,University of Shanghai for Science and Technology,Shanghai 200093;The College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200030,China)
出处 《计算机工程与科学》 CSCD 北大核心 2022年第9期1676-1685,共10页 Computer Engineering & Science
基金 国家重点研发计划(2018YFC0810204,2018YFB17026) 国家自然科学基金(61872242) 上海市科技创新行动计划(19511105103) 上海现代光学系统重点实验室项目。
关键词 颈部超声图像神经检测 多尺度 加权损失函数 卷积神经网络 cervical ultrasound nerve detection multiscale weighted loss function convolutional neural network
  • 相关文献

参考文献6

二级参考文献47

共引文献66

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部