摘要
为分析小微园区多能互补能源网络的即时状态分布,促进园区可再生能源消纳以及清洁能源消耗比重提升,推动能源利用转型与双碳目标落地,本文探析了多能互补能源利用形式及体系架构,分析了数字孪生技术的构成要素及模型框架,搭建了多能互补能源体系数字孪生框架模型,提出了基于ANSYS Twin Builder及Microsoft Azure IoT的多能互补微型能源网络数字孪生实现方法,通过对滨海辖区OZ小微园区建立微型能源网络构建数字孪生模型实时仿真,实现孪生体在物理世界与数字世界的孪生互动,以此即时分析了解其园区能源网络的状态分布,同时为园区内各种能源形势的动态调度提供辅助决策,构建数字能源生态,高质量赋能新型电力系统省级示范区建设,推动我国能源结构转型及碳达峰、碳中和目标实现。
In order to understand and analyze the real-time state distribution of multi-energy complementary energy networks in small and micro parks,promote the consumption of renewable energy and the proportion of clean energy consumption in the park,and promote the transformation of energy utilization and the implementation of double carbon targets,this paper explores the forms and architecture of multi-energy complementary energy utilization,analyzes the constituent elements and model framework of digital twin technology,builds a digital twin framework model of multi-energy complementary energy systems,and proposes a digital twin implementation method of multi-energy complementary micro-energy network based on ANSYS Twin Builder and Microsoft Azure IoT,and constructs a real-time simulation of digital twin model by establishing a micro-energy network in OZ small and micro parks in coastal jurisdiction,to achieve the twin interaction between the physical world and the digital world,so as to analyze and understand the state distribution of its energy network in real time,while providing auxiliary decision-making for the dynamic scheduling of various energy situations in the park,building a digital energy ecology,empowering the construction of provincial demonstration zones for new power systems with high quality,and promoting the transformation of China's energy structure and the realization of carbon peaking and carbon neutrality goals.
作者
姚娟
张晓文
宋嘉
董新伟
YAO Juan;ZHANG Xiaowen;SONG Jia;DONG Xinwei(State Grid Zhejiang Electric Power Co.,Ltd.,Jiaxing Power Supply Company,Jiaxing 334201,Zhejiang,China;China University of Mining and Technology,Xuzhou 221000,Jiangsu,China)
出处
《电力大数据》
2022年第3期43-50,共8页
Power Systems and Big Data
关键词
多能互补
数字孪生
微型能源网络
模型
仿真
multi-energy complementary
digital twin
micro energy network
model
simulation