期刊文献+

矿井通风系统可靠性预测研究

Study on Reliability Prediction of Mine Ventilation System
下载PDF
导出
摘要 为解决矿井通风系统监控实效性差的问题,分析同煤集团大斗沟煤矿矿井通风系统的现状,提出采用BP神经网络算法,对通风系统的可靠性进行动态研究,通过Matlab仿真软件进行预测系统验证。结果表明,神经网络模型能反映系统的可靠性级别,通风系统比较可靠,为建立预测系统的数学模型提供经验。 In order to solve the problem of poor monitoring effectiveness of mine ventilation system,the present situation of mine ventilation system in Dadougou Coal Mine of Datong Coal Group is analyzed,and the BP neural network algorithm is proposed to dynamically study the reliability of ventilation system,and the prediction system is verified by Matlab simulation software.The results show that the neural network model can reflect the reliability level of the system,and the ventilation system is more reliable,which provides experience for establishing the mathematical model of the prediction system.
作者 张佳哲 Zhang Jiazhe(Eighth Squadron,Safety Supervision Brigade of Jinneng Holding Coal Industry Group,Shanxi Datong 037003)
出处 《山东煤炭科技》 2022年第8期199-201,共3页 Shandong Coal Science and Technology
关键词 通风系统 BP神经网络 可靠性 MATLAB仿真 ventilating system BP neural network reliability Matlab emulation
  • 相关文献

参考文献7

二级参考文献22

共引文献23

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部