期刊文献+

On Triangular Lattice Boltzmann Schemes for Scalar Problems

原文传递
导出
摘要 We propose to extend the d’Humi`eres version of the lattice Boltzmann scheme to triangular meshes.We use Bravais lattices or more general lattices with the property that the degree of each internal vertex is supposed to be constant.On such meshes,it is possible to define the lattice Boltzmann scheme as a discrete particle method,without need of finite volume formulation or Delaunay-Voronoi hypothesis for the lattice.We test this idea for the heat equation and perform an asymptotic analysis with the Taylor expansion method for two schemes named D2T4 and D2T7.The results show a convergence up to second order accuracy and set new questions concerning a possible super-convergence.
出处 《Communications in Computational Physics》 SCIE 2013年第3期649-670,共22页 计算物理通讯(英文)
基金 the“LaBS project”(Lattice Boltzmann Solver,www.labs-project.org) funded by the French“FUI8 research program”。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部