期刊文献+

A unified theory for gas dynamics and aeroacoustics in viscous compressible flows.Part I.Unbounded fluid 被引量:1

黏性可压缩气体动力学和气动声学的统一理论基础初探(I)无界流动
原文传递
导出
摘要 This paper presents a deep reflection on the advective wave equations for velocity vector and dilatation discovered in the past decade.We show that these equations can form the theoretical basis of modern gas dynamics,because they dominate not only various complex viscous and heat-conducting gas flows but also their associated longitudinal waves,including aero-generated sound.Current aeroacoustics theory has been developing in a manner quite independently of gas dynamics;it is based on the advective wave equations for thermodynamic variables,say the exact Phillips equation of relative disturbance pressure as a representative one.However,these equations do not cover the fluid flow that generates and propagates sound waves.In using them,one has to assume simplified base-flow models,which we argue is the main theoretical obstacle to identifying sound source and achieving effective noise control.Instead,we show that the Phillips equation and alike is nothing but the first integral of the dilatation equation that also governs the longitudinal part of the flow field.Therefore,we conclude that modern aeroacoustics should merge back into the general unsteady gas dynamics as a special branch of it,with dilatation of multiple sources being a new additional and sharper sound variable. 本文是对过去十年发现的速度矢量和胀量的运流波动方程的反思和深化.结果表明,矢量速度方程和胀量方程不仅能刻画黏性传热流体的各种复杂流动本身,而且能刻画包括气动噪声在内的各种纵波在复杂流场中的非线性形成与演化,因此它们可以构成现代气体动力学的理论基础.现代气动声学理论的建立是基于热力学变量的运流波动方程(例如Phillips方程),其发展完全独立于气体动力学.然而,基于热力学变量的方程不能预测产生并传播声波的各种复杂流动本身,使得人们不得不代之以过度简化的模型,因而导致了声源识别的不确定性和噪声难以控制.我们证明,Phillips方程和同类基于热力学变量的方程只不过是胀量方程的一次积分,后者主管了流动的纵场部分.因此,现代气动声学作为气体动力学的一个分支应该重新融合到气体动力学的统一理论框架之中,同时具有多种物理源的胀量也应该视为新的且更普适的声学变量.
作者 Feng Mao Linlin Kang Luoqin Liu Jiezhi Wu 毛峰;康林林;刘罗勤;吴介之(State Key Laboratory for Turbulence and Complex Systems,College of Engineering,Peking University,Beijing,100871,China;Shenzhen Tenfong Technology Co.,LTD,Shenzhen,518055,China;School of Engineering,Westlake University,Hangzhou,310024,China;Department of Modern Mechanics,University of Science and Technology of China,Hefei,230026,China;Physics of Fluids Group,University of Twente,7500 AE,Enschede,The Netherlands)
出处 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第7期65-79,I0002,共16页 力学学报(英文版)
基金 supported by the National Natural Science Foundation of China(Grant Nos.12102365,91752202 and 11472016) Luoqin Liu was supported by the Hundred Talents Program of the Chinese Academy of Sciences(CAS).
关键词 Gas dynamics-aeroacoustics viscous compressible flow Advective wave equations Thermodynamic variables DILATATION Process splitting and coupling 气体动力学 热力学变量 气动声学 可压缩气体 波动方程 声源识别 速度矢量 运流
  • 相关文献

参考文献2

二级参考文献24

  • 1Wu, J.Z., Ma, H.Y., Zhou, M.D.: Vorticity and Vortex Dynamics. Svringer, Berlin (2006). 被引量:1
  • 2Rayleigh, L.: The Theory of Sound. Dover, New York (1929). 被引量:1
  • 3Doak, RE.: Analysis of internally generated sound in continuous materials: 2. A critical review of the conceptual adequacy and physical scope of existing theories of aerodynamic noise, with special reference to supersonic jet noise. J. Sound Vib. 25,263-335 (1972). 被引量:1
  • 4Lagerstrom, RA., Cole, J.D., Trilling, L.: Problems in the Theory of Viscous Compressible Fluids. Technical report, California Institute of Technology, Pasadena, California (1949). 被引量:1
  • 5Wu, T.Y.T.: Small perturbations in the unsteady flow of a compressible, viscous and heat-conducting fluid. J. Math. Phys. 35, 1327 (1956). 被引量:1
  • 6Chu, B.T., Kovasznay, L.S.G.: Non-linear interactions in a viscous heat-conducting compressible gas. J Fluid Mech. 3, 494- 514(1958). 被引量:1
  • 7Pierce, A.D.: Acoustics: an Introduction to Its Physical Principles and Applications, 2nd edn. Acoustical Society of America, New York (1989). 被引量:1
  • 8Lighthill, M.J.: On sound generated aerodynamically. I. General theory. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 211(1107), 564- 587 (1952). 被引量:1
  • 9Wang, M., Freund, J.B., Lele, S.K.: Computational prediction of flow-generated sound. Annu. Rev. Fluid Mech. 38(1), 483- 512 (2006). 被引量:1
  • 10Doak, EE.: Fluctuating total enthalpy as the basic generalized acoustic field. Theor. Comput. Fluid Dyn. 10(14), 115-133 (1998). 被引量:1

共引文献4

同被引文献9

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部