摘要
目的:评估不同缺失值处理方法在不同缺失模式、缺失机制及缺失比例下双臂优效临床试验中的统计性能,筛选出相应的最优缺失值处理方式。方法:使用SAS 9.4软件分别生成不同缺失模式(单调缺失或任意缺失)、缺失机制(完全随机缺失或随机缺失)以及不同缺失比例(0%~5%、5%~10%、10%~15%)的纵向模拟数据集,基于各模拟数据集分别使用不同缺失值处理策略进行疗效估计,并分别与完整数据集比较,以评价不同缺失值处理方式的统计性能。结果:当缺失比例<5%时,任意缺失模式下不同缺失值处理方式所得效应估计值均较为接近,单调缺失模式下只有重复测量混合效应模型(MMRM)以及多重填补后协方差分析误差较小。当缺失比例>5%时,不论缺失机制以及缺失模式,不同协方差矩阵结构的MMRM以及多重填补不同次数后协方差分析所得效应估计值与真实值之间仍最接近,且前者较后者更为稳定。而单一填补方式以及模式混合模型(PMM)随着缺失比例增加,其效应估计的误差也增加,尤其是单调缺失,当缺失比例为10%~15%时其误差最大。结论:不同缺失比例(0%~5%、5%~10%、10%~15%),缺失模式(单调缺失或任意缺失)以及缺失机制(完全随机缺失或随机缺失)下,MMRM误差最小,提示MMRM是处理双臂优效性临床试验中纵向定量数据缺失的首选方案。
Objective:To evaluate the statistical performance of various missing value processing methods in a two-arm superiority clinical trial with different missing patterns,mechanisms and proportions.Methods:We generated longitudinal simulation datasets containing monotonic and arbitrary missing patterns,missing mechanisms that occurred at random or completely at random,and missing proportions of 0%-5%,5%-10%and 10%-15%,respectively.Estimations of efficacy between the two groups after performing treatment in each simulated dataset by different missing value handling methods,and the statistical performance of the different methods were evaluated according to the magnitude of the difference in estimated efficacy from the full data set.Results:When the proportion of missingness was<5%,the effect estimates obtained from different missingness treatments in any missing patterns were close to each other,and the effect estimates from repeated measures mixed effects model(MMRM)and the analysis of covariance with multiple imputations in monotonic missing patterns were closest to the true values.When the proportion of missingness>5%,the effect estimates from MMRM with different covariance matrix structures and the analysis of covariance with multiple imputations were still closest to the true values regardless of the missing mechanisms and missing patterns,with the former more stable than the latter.In contrast,the error in the effect estimates of the single imputation approach and the mixed-mode model(PMM)increased with the proportion of missing,especially for the monotonic missing,where the error was greatest when the proportion of missing was 10%-15%.Conclusion:MMRM yielded the most accurate effect estimates for different missing proportions(0%-5%,5%-10%and 10%-15%),missing patterns(monotonic missing or arbitrary missing),and missing mechanisms(completely random missing or random missing),suggesting that MMRM is the preferred solution for dealing with missing longitudinal quantitative data in two-arm superiority clinical trials
作者
赵淑珍
金东镇
李慧慧
赖梦园
黄若谷
毛广运
ZHAO Shuzhen;JIN Dongzhen;LI Huihui;LAI Mengyuan;HUANG Ruogu;MAO Guangyun(Department of Preventive Medicine,School of Public Health and Management,Wenzhou Medical University,Wenzhou 325035,China;Center on Clinical Research,the Eye Hospital of Wenzhou Medical University,Wenzhou 325027,China)
出处
《温州医科大学学报》
CAS
2022年第8期632-637,共6页
Journal of Wenzhou Medical University
基金
国家重点研发计划项目(2020YFC2008201)
2021年浙江省大学生科技创新活动计划暨新苗人才计划(2021R413062)
浙江省基础公益研究计划项目(LGF19H260011)
国家自然科学基金项目(81670777)。
关键词
双臂优效临床试验
定量纵向数据
缺失值
重复测量的混合效应模型
多重填补
two-arm superiority
clinical trial
longitudinal quantitative data
missing value
repeated measures mixed effects model
multiple imputation