期刊文献+

采用压缩感知的卫星高频姿态确定方法

Method of satellite high-frequency attitude determination using compressive sampling
下载PDF
导出
摘要 高频振荡通常会超过星载陀螺和星敏的测量频率范围,导致卫星姿态确定精度下降。因此,提出一种基于常规姿态传感器进行高频姿态确定的方法。将高频姿态抖动看作一个稀疏信号,通过压缩感知的方法将该信号从低频采样结果中恢复。利用低带宽姿态传感器和卡尔曼滤波器测量得到低频姿态数据并进行融合,再通过压缩感知算法从融合数据中恢复出高频姿态数据。通过仿真实验验证了该方法的有效性。 High-frequency attitude vibration usually exceeds the measurement frequency range of spaceborne gyroscopes and star sensors,resulting in a decrease in the accuracy of satellite attitude determination.Thus,a method for high-frequency attitude determination based on the regular attitude sensors was proposed.The key idea is that the high-frequency attitude of the spacecraft was sparse in the frequency domain and can be recovered from the normal-sampling-rate measurements.In this method,the normal-sampling-rate attitude sensors and indirect Kalman filters were used to estimate attitude.The filters'estimation results were merged,and the high-frequency attitude was recovered from the merged data using the compressive sampling algorithm.The effectiveness of the method was verified by simulation experiments.
作者 汪璞 胡祥语 安玮 盛卫东 林再平 曾瑶源 WANG Pu;HU Xiangyu;AN Wei;SHENG Weidong;LIN Zaiping;ZENG Yaoyuan(College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073,China;The PLA Unit 93147,Mianyang 621000,China)
出处 《国防科技大学学报》 EI CAS CSCD 北大核心 2022年第4期81-92,共12页 Journal of National University of Defense Technology
基金 国家部委基金资助项目(2021-JCJQ-JJ-0027)。
关键词 高频姿态 低带宽姿态传感器 间接卡尔曼滤波 压缩感知 high-frequency attitude normal-sampling-rate attitude sensors indirect Kalman filter compressive sampling
  • 相关文献

参考文献10

二级参考文献106

  • 1郭素云,樊立波,胡恒章.通过星光测量确定飞行器姿态的Kalman滤波估计[J].哈尔滨工业大学学报,1993,25(6):48-54. 被引量:1
  • 2张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 3R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121. 被引量:1
  • 4Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383. 被引量:1
  • 5Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998. 被引量:1
  • 6E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999. 被引量:1
  • 7E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664. 被引量:1
  • 8Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501. 被引量:1
  • 9G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91. 被引量:1
  • 10V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09. 被引量:1

共引文献725

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部