期刊文献+

基于Jetson Nano视觉应用平台设计 被引量:3

Vision application platform design based on Jetson Nano
下载PDF
导出
摘要 Jetson Nano为硬件基础核心,设计并实现了目标信息检测系统。整个系统由摄像头、Jetson Nano、外围电路设备三大部分构成。通过高性能深度学习推理优化器—TensorRT技术的应用加速了神经网络的推理,实现了既能快速识别照片,又能通过摄像头实时检测目标的效果。通过实际环境的测试表明:该系统能实时完成检测视频画面的目标信息。此外,该系统具有核心处理单元体积小,能快速在多个无人系统场景部署应用的优势,且性能满足各项技术指标要求。 Using Jetson Nano as the core of the hardware, a target information detection system is designed and implemented.The whole system consists of three parts which are camera, Jetson Nano, and peripheral circuit equipment.The system accelerates neural network inference through the application of high-performance deep learning inference optimizer, TensorRT technology, and achieves the effect of not only quickly recognizing photos, but also real-time detection of targets through the camera.Through the test of the actual environment, the system can complete the target information detection of the video screen in real time.In addition, the system has the advantages of a small core processing unit, which can quickly deploy applications in multiple unmanned system scenarios, and its performance meets various technical indicators.
作者 龙诗科 蒋奇航 包友南 王建琦 LONG Shike;JIANG Qihang;BAO Younan;WANG Jianqi(School of Aeronautics and Astronautics,Guilin University of Aerospace Technology,Guilin 541004,China;Key Laboratory of Unmanned Aerial Vehicle Telemetry of Guangxi Province,Guilin 541004,China)
出处 《传感器与微系统》 CSCD 北大核心 2022年第9期99-101,108,共4页 Transducer and Microsystem Technologies
基金 国家自然科学基金资助项目(61966010) 广西小型无人机系统及应用工程研究中心资助项目 广西高校中青年教师科研基础能力提升项目(2021KY0793,2021KY0801)。
关键词 人工智能 神经网络 机器视觉 TensorRT技术 Jetson Nano artificial intelligence neural network machine vision TensorRT technology Jetson nano
  • 相关文献

参考文献6

二级参考文献38

  • 1熊超,田小芳,陆起涌.嵌入式机器视觉系统设计[J].仪器仪表学报,2005,26(z2):368-370. 被引量:8
  • 2薛同泽,沙占友,崔博.人体静电放电(ESD)及保护电路的设计[J].微计算机信息,2007(05Z):303-304. 被引量:15
  • 3Geyer C, Daniilidis K. Paracatadioptric camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(5) :687--695. 被引量:1
  • 4Micusik B, Pajdla T. Estimation of omnidirectional camera model from epipolar geometry[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003,1 : 485--490. 被引量:1
  • 5Zhang Z Y. A flexible new technique for camera calibration[J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000. 22( 11 ) : 1330--1334. 被引量:1
  • 6Kang S B. C,atadioptric self-calibration[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2000,1:201--207. 被引量:1
  • 7Micusik B, Pajdla T. Para-catadioptric camera auto-calibration from epipolar geometry[C]. In Proceedings of the 6th Asian Conference on Computer Vision, Korea:Jeju Island ,2004,2. 748-753. 被引量:1
  • 8Svoboda T, Pajdla T. Epipolar geometry for central catadioptric cameras[J ]. International Journal of Computer Vision, 2002, 49(1):23--37. 被引量:1
  • 9Baker S, Nayar S K. A theory of eatadioptric image formation[C]. The 6th International Conference on Computer Vision, India, 1998.35--42. 被引量:1
  • 10Strelow D, Mishler J, Koes D, et al. Precise omnidirectional camera calibration[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2001,1. 689--694. 被引量:1

共引文献19

同被引文献32

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部