期刊文献+

基于交替方向惩罚法的低精度量化MIMO雷达恒模波形设计方法 被引量:1

Constant Modulus Waveform Design for Low-resolution Quantization MIMO Radar Based on an Alternating Direction Penalty Method
下载PDF
导出
摘要 在MIMO雷达中配备大量有源天线单元可以获得优异的波束形成性能,但会导致系统能耗大、电路复杂及成本高等问题。采用低精度的DAC组件可有效克服上述问题,但现有基于无限精度DAC条件所设计的MIMO雷达波形往往难以直接适用于低精度DAC系统。为此,该文提出了一种离散相位约束下基于最小化积分副主瓣比的低精度量化MIMO雷达恒模波形设计方法。该方法首先采用丁克尔巴赫(Dinkelbach)算法将目标函数二次分数形式转换成减法形式,再利用交替方向惩罚法求解非凸恒模离散相位约束问题。最后通过数值仿真与其他方法进行对比,分析了所提方法的发射方向图与积分副主瓣比性能,验证了该方法的有效性。 Outstanding beamforming performance of the Multiple-Input Multiple-Output(MIMO)radar can be achieved by deploying a large number of active antenna elements.Nonetheless,this will significantly increase power consumption,circuit complexity and hardware cost.These problems can be overcome by utilizing lowresolution Digital-to-Analog Converter(DAC)components.However,MIMO radar waveforms designed under the condition of infinite-resolution DACs are usually inapplicable to systems with low-resolution DACs.Therefore,under the constraints of discrete phases,this paper proposes a MIMO radar constant modulus waveform design method based on Integrated Sidelobe-to-Mainlobe Ratio(ISMR)minimization.The Dinkelbach algorithm is first used to convert the objective function with quadratic fractional form into a subtraction form.Then,the alternating direction penalty method is employed to solve the nonconvex constant modulus discrete phase constraint problem.Finally,by comparison with other methods through numerical simulations,the behavior of the transmit beampattern and the performance of ISMR are analyzed,and the effectiveness of the method is verified.
作者 万环 余显祥 全智 廖斌 WAN Huan;YU Xianxiang;QUAN Zhi;LIAO Bin(School of Electronics and Information Engineering,University of Shenzhen,Shenzhen 518060,China;School of Information and Communication Engineering,University of Electronic Science and Technology of China,Chengdu 611731,China)
出处 《雷达学报(中英文)》 EI CSCD 北大核心 2022年第4期557-569,共13页 Journal of Radars
基金 国家自然科学基金(62171292) 广东省自然科学基金(2020A1515010410,2022A1515010188)。
关键词 低精度量化 恒模 离散相位 发射波形 交替方向惩罚法 Low-resolution quantization Constant modulus Discrete phase Transmit waveform Alternate Direction Penalty Method(ADPM)
  • 相关文献

参考文献2

二级参考文献104

  • 1Davis M E, Kapfer R M, and Bozek R E. Commonwaveform for simultaneous SAR and GMTI[C]. IEEERadar Conference, Kansas City, MO, USA, 2011:282*287. 被引量:1
  • 2Baker C J. and Griffiths H D. RADAR systems andwaveforms[OL]. http://radar.det.unifi.it/radar/prin2007/Baker-Radar-Systems-and-Waveforms.pdf, 2004. 被引量:1
  • 3Darlington S. Pulse transmissions[P]. Patent U.S. 2 678997, May 18,1954. 被引量:1
  • 4Harris F J. On the use of windows for harmonic analysiswith the discrete fourier transform [J]. Proceedings of theIEEE, 1978, 66(1): 51-83. 被引量:1
  • 5Rigling B D and Goley G S. On the feasibility of ISARprocessing of stepped frequency waveforms [C]. IEEERadar Conference, Ottawa, ON, Canada, 2013: 1-6. 被引量:1
  • 6Murthy V, Pillai U, and Davis M E. Waveforms forsimultaneous SAR and GMTI[C]. IEEE RadarConference, Atlanta, GA, USA, 2012: 51-56. 被引量:1
  • 7Griffiths H D and Vinagre L. Design of low-sidelobe pulsecompression waveforms[J]. Electronics Letters' 1994,30(12): 1004-1005. 被引量:1
  • 8Witte E and Griffiths H D. Improved ultra-low rangesidelobe pulse compression waveform design[J]. ElectronicsLetters, 2004,40(22): 1448-1450. 被引量:1
  • 9Barker R H. Group synchronizing of binary digitalsequences [J]. Communication Theory, 1953, 273-287. 被引量:1
  • 10Chi Y, Pezeshki A, Calderbank R, et al" Range sidelobesuppression in a desired Doppler interval [C]. IEEEInternational Waveform Diversity and Design Conference,Kissimmee, FL, USA, 2009: 8—13. 被引量:1

共引文献17

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部