期刊文献+

人脸表情识别技术研究综述 被引量:5

Overview of facial expression recognition technology
下载PDF
导出
摘要 人脸表情识别技术是一个广泛的研究方向,涉及机器学习、图像处理、心理学等诸多领域,应用前景也相当广阔。近年来,随着人工智能等领域的发展和进步,属于情感计算领域的人脸表情识别技术也逐渐成为一个热门的研究方向。人脸表情识别任务一般由获取人脸图像、图像预处理、特征提取、特征分类4部分组成,人脸表情图像一般直接采用相关的数据集获取。首先介绍了人脸表情识别任务中需要进行的图像预处理步骤,以及特征提取和特征分类中的传统研究方法和深度学习方法,最后对人脸表情识别相关的数据集、发展趋势与挑战等进行阐述,并提出对未来的相关研究方法的看法。 Facial expression recognition is a research direction involving knowledge in many fields such as machine learning,image processing,psychology,etc.,and its application scenarios are also quite broad.Recently,the study of facial expression recognition technology by emotion calculation has attracted attention.Facial expression recognition tasks generally consist of four parts:obtaining facial images,image preprocessing,feature extraction,and feature classification.Facial expression images are generally obtained directly from related data sets.Therefore,the step of image preprocessing is first introduced,followed by a sequential introduction of traditional research methods and deep learning methods in feature extraction and feature classification.Finally,a comprehensive elaboration of the data sets,development trends and challenges related to facial expression recognition is described.
作者 刘建华 唐雷 LIU Jianhua;TANG Lei(China Institute of Art Science and Technology,Beijing 100012,China;Science and Technology Development Department,China Academy of Information and Communications Technology,Beijing 100191,China)
出处 《信息通信技术与政策》 2022年第8期89-96,共8页 Information and Communications Technology and Policy
关键词 人工智能 人脸表情识别 特征提取 特征分类 artificial intelligence facial expression recognition feature extraction feature classification
  • 相关文献

参考文献5

二级参考文献84

  • 1王宇博,艾海舟,武勃,黄畅.人脸表情的实时分类[J].计算机辅助设计与图形学学报,2005,17(6):1296-1301. 被引量:14
  • 2刘晓旻,谭华春,章毓晋.人脸表情识别研究的新进展[J].中国图象图形学报,2006,11(10):1359-1368. 被引量:62
  • 3Aleksic Petar S, Katsaggelos Aggelos K. Automatic facial expression recognition using facial animation parameters and muhistream HMMs [ J]. IEEE Transactions on Information Forensics and Security, 2006, 1(1):3-11. 被引量:1
  • 4Michael J L, Julien Budynek, kamatsu Shigeru A. automatic classification of single facial images [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1999, 21 (12): 1357 - 1362. 被引量:1
  • 5Ma L, Xiao Y, Khorasani K, et al. A new facial expression recognition technique using 2D DCT and k-means algorithm[A]. In: Proceedings of International Conference on Image Processing [ C ] , Singapore ,2004,2,1269 - 1272. 被引量:1
  • 6Kirby M, Sirovieh L. Application of the Karhunen-Loeve procedure for the characterization of human faces [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990,12 ( 1 ) : 103 - 108. 被引量:1
  • 7Duda R, Hart P, Stork D. Pattern Classification (second edition) [ M ]. New York : Wiley-lnterscience, 2000 : 114 - 139. 被引量:1
  • 8Zuo M J, Lin J, Fan X. Feature separation using ICA for a one- dimensional time series and its application in fault detection [ J ]. Journal of Sound and Vibration, 2005, 287 (3) :614 - 624. 被引量:1
  • 9Fellenz W A, Taylor J G, Tsapatsoulis N, et al. Comparing templatebased, feature-based and supervised classification of facial expressions form static images [ A ]. In: Proceedings of the 3rd International Muhiconference on Circuits, Systems ( IMACS), Communications and Computers[C], Athens, Greece, 1999:5331 -5336. 被引量:1
  • 10Chuang Chao-fa, Shih Frank Y. Recognizing facial action units independent component analysis and support vector machine [ J ]. Pattern Recognition, 2006,39 ( 9 ) : 1795 - 1795. 被引量:1

共引文献74

同被引文献31

引证文献5

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部