期刊文献+

基于CNN+LSTM的藏语语音去噪算法 被引量:1

Tibetan Speech Denoising Algorithm Based on CNN+LSTM
下载PDF
导出
摘要 本文主要研究藏语语音去噪算法,提出一种基于频谱映射的卷积长短期记忆藏语语音去噪算法。该算法由数据准备模块、特征提取模块、网络模块以及音频还原模块4个模块组成,以纯净的拉萨语语音和加了噪声库NOISE-92六种单一噪声的带噪语音作为数据集,提取带噪语音和纯净语音的对数功率谱特征作为输入对网络进行训练,网络的效果通过可感知语音质量和短时客观可懂度两个指标进行评价。实验结果表明,该算法在非平稳噪声上的去噪效果优于平稳噪声,且信噪比越大其去噪效果越好;在低信噪比下,该算法在非平稳噪声上的表现优于谱减法和最小均方误差法。 The main research content of this paper is Tibetan speech denoising algorithm. This paper proposes a convolutional long short-term memory Tibetan speech denoising algorithm based on spectral mapping. The algorithm consists of four modules: data preparation module, feature extraction module, network module, and audio restoration module. The pure Lhasa language speech and the noisy speech with six single noises added in the noise library NOISE-92 are used as the data set. The logarithmic power spectrum features of noisy speech and pure speech are used as input to train the network. The effect of the network is determined by perceptual estimation of speech quality and short-time objective intelligibility are evaluated by two indicators. The experimental results show that,,the denoising effect of the algorithm on non-stationary noise is better than that of stationary noise, and the greater the signal-to-noise ratio, the better the de-noising effect;at low signal-to-noise ratio, the algorithm is in it outperforms spectral subtraction and least mean square error methods on non-stationary noise.
作者 王君堡 王希 边巴旺堆 WANG Junbao;WANG Xi;BIANBA Wangdui(School of Information Science and Technology,Lhasa 850000,China;National Experimental Teaching Demonstration Center of Information Technology,Lhasa 850000,China)
出处 《电声技术》 2022年第6期47-53,共7页 Audio Engineering
关键词 藏语去噪 对数功率谱 卷积长短期记忆网络 Tibetan language denoising logarithmic power spectrum convolutional long short-term memory network
  • 相关文献

参考文献9

二级参考文献74

  • 1Hinton G E, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computa- tion, 2006,18(7) :1527-1554. 被引量:1
  • 2Arel I, Rose D C, Karnowski T P. Deep machine learning-A new frontier in artificial intelligence re- search[J]. Computational Intelligence Magazine, IEEE, 2010,5(4) :13-18. 被引量:1
  • 3Deng L. An overview of deep-structured learning for information processing[C]//Proc Asian- Pacific Sig nal and Information Processing-Annual Summit and Conference (APSIPA-ASC). Xi'an, China: [s. n. ], 2011. 被引量:1
  • 4Bengio Y. Learning deep architectures for AI[J]. Foundations and Trends in Machine Learning, 2009, 2(1) :1-127. 被引量:1
  • 5Hinton G E. Training products of experts by minimi- zing contrastive divergenee[J]. Neural Computation, 2002,14(8): 1771-1800. 被引量:1
  • 6Baker J, Deng L, Glass J, et al. Developments and directions in speech recognition and understanding, Part 1[J]. Signal Processing Magazine, IEEE, 2009, 26(3) :75-80. 被引量:1
  • 7Yu D, Deng L. Deep learning and its applications to signal and information processing[J]. Signal Process ing Magazine, IEEE, 2011,28(1) : 145-154. H. 被引量:1
  • 8opfield J J. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences, 1982,79(8):2554-2558. 被引量:1
  • 9Orbach J. Principles of neurodynamics perceptrons and the theory of brain mechanisms[J]. Archives of General Psychiatry, 1962,7 (3) : 218. 被引量:1
  • 10Rumelhart D E, Hinton G E, Williams R J. Learn- ing representations by back-propagating errors [J]. Cognitive Modeling, 2002,1 : 213. 被引量:1

共引文献52

同被引文献10

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部