期刊文献+

基于NARX动态神经网络的民航客运量预测研究 被引量:2

Research on Passenger Volume Forecast of Civil Aviation Based on NARX Dynamic Neural Network
下载PDF
导出
摘要 民航客运量的准确预测对民航交通规划建设具有现实意义。论文首先对民航客运量数据的变化趋势和特点进行分析,得到客运量时序数据的发展趋势及波动规律。其次,论文提出基于NARX动态神经网络的民航客运量预测方法,该模型可以从非平稳的时序数据中提起历史数据的发展趋势以及周期波动的规律。论文利用2008年~2017年的历史客运量时序数据对未来两年的客运量进行仿真预测并验证。同时,论文还选用了ARIMA模型,Holt-Winters模型进行对比仿真实验。仿真结果表明,NARX动态神经网络的预测精度最高,R2、MAE、RMSE分别为0.91、81(万人)、102(万人),可以有效提高民航客运量预测的准确度。 The accurate prediction of civil aviation passenger traffic is of practical significance to civil aviation transportation planning and construction.This paper first analyzes the change trend and characteristics of civil aviation passenger traffic data,and obtains the development trend and fluctuation law of passenger traffic time series data.Secondly,this paper proposes a passenger traffic volume prediction method based on NARX dynamic neural network.This model can bring up the development trend of histori⁃cal data and the law of periodic fluctuations from non-stationary time series data.This article uses historical passenger traffic time series data from 2008 to 2017 to simulate and predict passenger traffic in the next two years.At the same time,this article also se⁃lected the ARIMA model,Holt-Winters model for comparative simulation experiments.The simulation results show that the NARX dynamic neural network has the highest prediction accuracy,R2,MAE,and RMSE are 0.91,81(10,000),and 102(10,000),re⁃spectively,which can effectively improve the accuracy of civil aviation passenger traffic forecast.
作者 张启凡 王永忠 王圣堂 裴柯欣 ZHANG Qifan;WANG Yongzhong;WANG Shengtang;PEI Kexin(School of Air Traffic Management,Civil Aviation Flight University of China,Guanghan 618300)
出处 《计算机与数字工程》 2022年第7期1485-1488,1493,共5页 Computer & Digital Engineering
基金 中国民航飞行学院科研创新基金项目(编号:X2020-27)资助。
关键词 民航客运量 时间序列仿真 NARX ARIMA Holt-Winters civil aviation passenger traffic time series simulation NARX ARIMA Holt-Winters
  • 相关文献

参考文献13

  • 1于红.民航空管系统科技管理现状及对策研究[J].民航管理,2016(8):41-44. 被引量:1
  • 2贾云暖..我国民航运输周转量的分析与预测[D].南开大学,2006:
  • 3王翠..基于灰色理论和RBF神经网络民航客运量预测方法研究[D].北京交通大学,2008:
  • 4罗毅..基于灰色理论与广义回归神经网络的客运量预测模型研究[D].西南交通大学,2007:
  • 5韩阳,吕由,潘宇航,周齐,杨爱民.SVM、BP神经网络、线性回归的比较研究[J].华北理工大学学报(自然科学版),2017,39(2):104-109. 被引量:11
  • 6耿宏,任道先,杜鹏.基于NARX神经网络航空发动机参数动态辨识模型[J].计算机工程与应用,2017,53(12):241-248. 被引量:14
  • 7吴玲..基于生理与行为指标的高速公路特长隧道环境驾驶人风险特性研究[D].长安大学,2018:
  • 8闫雨瑗..BP神经网络在甲烷化学链重整反应中的应用研究[D].西北大学,2019:
  • 9王俊雪..风电场单机短期风电功率预测方法研究[D].山东建筑大学,2019:
  • 10师圣蔓..基于机器学习的网络流量预测与应用研究[D].北京邮电大学,2019:

二级参考文献41

共引文献54

同被引文献19

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部