期刊文献+

Cardiovascular Disease Prediction Among the Malaysian Cohort Participants Using Electrocardiogram

下载PDF
导出
摘要 A comprehensive study was conducted to differentiate cardiovascular disease (CVD) subjects from non-CVD subjects using short recording electrocardiogram (ECG) of 244 Malaysian adults in The MalaysianCohort project. An automated peak detection algorithm to detect nine fiducialpoints of electrocardiogram (ECG) was developed. Forty-eight features wereextracted in both time and frequency domains, including statistical featuresobtained from heart rate variability and Poincare plot analysis. These includefive new features derived from spectrum counts of five different frequencyranges. Feature selection was then made based on p-value and correlationmatrix. Selected features were used as input for five classifiers of artificialneural network (ANN), k-nearest neighbors (kNN), support vector machine(SVM), discriminant analysis (DA), and decision tree (DT). Results showedthat six features related to T wave were statistically significant in distinguishingCVD and non-CVD groups. ANN had performed the best with 94.44% specificity and 86.3% accuracy, followed by kNN with 80.56% specificity, 86.49%sensitivity and 83.56% accuracy. The novelties of this study were in providingalternative solutions to detect P-onset, P-offset, T-offset as well as QRS-onsetpoints using discrete wavelet transform method. Additionally, two out of thefive newly proposed spectral features were significant in differentiating bothgroups, at frequency ranges of 1–10 Hz and 5–10 Hz. The prediction outcomeswere also comparable to previous related studies and significantly importantin using ECG to predict cardiac-related events among CVD and non-CVDsubjects in the Malaysian population.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第4期1111-1132,共22页 计算机、材料和连续体(英文)
基金 This study was supported by the Ministry of Education Malaysia’s Fundamental Research Grant Scheme FRGS/1/2019/TK04/UKM/02/4 TMC research was funded by a top-down grant from the Ministry of Education Malaysia(Grant Number PDE48).
  • 相关文献

参考文献2

共引文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部