摘要
研究一类时变时滞系统的稳定性问题。首先,运用Lyapunov稳定性理论,构造合适的增广型Lyapunov-Krasovskii(L-K)泛函,该泛函包含时滞乘积项和增广矩阵;其次,采用Auxiliary-function-based不等式和改进的倒数凸组合方法来界定泛函导数中的积分交叉项,并通过Schur补引理,给出一个低保守性的稳定性准则;最后,对具有参数不确定性的时滞系统进行鲁棒H_(∞)稳定性分析,并通过数值算例验证了所得准则的有效性。
The problem of stability analysis for systems with time-varying delay is concerned in this paper.Firstly,based on Lyapunov stability theory and considered delay information,a suitable augmented Lyapunov-Krasovskii(L-K)functional is constructed by introducing delay-product-type term and augmented matrix.Secondly,the integral terms generated in the derivation process of L-K functional are estimated by combining an auxiliary-function-based inequality with an improved reciprocally convex method.Then,a stability criterion with less conservatism is proposed by Schur complement lemma.Further,robust H_(∞)stability analysis is performed for a class of uncertain and disturbed time-delay systems.Finally,the validity of the results are demonstrated by numerical examples.
作者
张镇佳
姜偕富
戎佳豪
赵冰
ZHANG Zhenjia;JIANG Xiefu;RONG Jiahao;ZHAO Bing(School of Automation,Hangzhou Dianzi University,Hangzhou Zhejiang 310018,China)
出处
《杭州电子科技大学学报(自然科学版)》
2022年第4期64-70,共7页
Journal of Hangzhou Dianzi University:Natural Sciences
基金
国家自然科学基金资助项目(61673148)。